
FINITE ELEMENT ANALYSIS 
– APPLICATIONS IN 

MECHANICAL 
ENGINEERING 

 
Edited by Farzad Ebrahimi 

 

  



 
 
 
 
 
Finite Element Analysis – Applications in Mechanical Engineering 
http://dx.doi.org/10.5772/ 3249 
Edited by Farzad Ebrahimi 
 
Contributors 
Jamal Samir, Jamal Echaabi, Mohamed Hattabi, Antonis P. Papadakis, A. Ghorbanpour Arani, 
R. Kolahchi, A. A. Mosalaei Barzoki, A. Loghman, F. Ebrahimi, Khosrow Ghavami, Mohammad 
Reza Khedmati, B.H. Wu, Mrityunjay R. Doddamani, Satyabodh M Kulkarni, Samia Dridi,  
Koji Hasegawa, Takao Shimada, Giovanni Leonardi, Michele Buonsanti, Ahmad Ivan Karayan, 
Deni Ferdian, Sri Harjanto, Dwi Marta Nurjaya, Ahmad Ashari, Homero Castaneda, P.H. Darji, 
D.P. Vakharia, Toshihiro Saito, Jairo A. Martins, István Kövesdy, Shinobu Sakai, Hitoshi 
Nakayama, YongAn Huang, Xiaoming Zhang, Youlun Xiong, Ali Najafi, Masoud Rais-Rohani 
 
Published by InTech 
Janeza Trdine 9, 51000 Rijeka, Croatia 
 
Copyright © 2012 InTech 
All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, 
which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited, which ensures maximum 
dissemination and a wider impact of our publications. After this work has been published by 
InTech, authors have the right to republish it, in whole or part, in any publication of which they 
are the author, and to make other personal use of the work. Any republication, referencing or 
personal use of the work must explicitly identify the original source. 
 
Notice 
Statements and opinions expressed in the chapters are these of the individual contributors and 
not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy 
of information contained in the published chapters. The publisher assumes no responsibility for 
any damage or injury to persons or property arising out of the use of any materials, 
instructions, methods or ideas contained in the book. 
  
Publishing Process Manager Oliver Kurelic 
Typesetting InTech Prepress, Novi Sad 
Cover InTech Design Team 
 
First published September, 2012 
Printed in Croatia 
 
A free online edition of this book is available at www.intechopen.com 
Additional hard copies can be obtained from orders@intechopen.com 
 
 
Finite Element Analysis – Applications in Mechanical Engineering,  
Edited by Farzad Ebrahimi  
    p. cm.  
ISBN 978-953-51-0717-0  



  



 



 
 

 
 

 
 
Contents 
 

Preface IX 

Section 1 Applications of FEA in  
“Fluid Mechanics and Heat Transfer” 1 

Chapter 1 Control Volume Finite Element Methods  
for Flow in Porous Media: Resin Transfer Molding 3 
Jamal Samir, Jamal Echaabi and Mohamed Hattabi 

Chapter 2 Electromagnetic and Fluid Analysis  
of Collisional Plasmas 31 
Antonis P. Papadakis 

Section 2 Applications of FEA in  
“Structural Mechanics and Composite Materials” 63 

Chapter 3 Finite Element Analysis of Functionally  
Graded Piezoelectric Spheres 65 
A. Ghorbanpour Arani, R. Kolahchi, A. A. Mosalaei Barzoki,  
A. Loghman and F. Ebrahimi 

Chapter 4 Nonlinear Large Deflection Analysis of Stiffened Plates 87 
Khosrow Ghavami and Mohammad Reza Khedmati 

Chapter 5 3D Nonlinear Finite Element Plastic Analysis  
of Cylindrical Vessels Under In-Plane Moment 115 
B.H. Wu 

Chapter 6 Flexural Behavior of  
Functionally Graded Sandwich Composite 131 
Mrityunjay R. Doddamani and Satyabodh M Kulkarni 

Chapter 7 Finite Element Analysis of  
Bias Extension Test of Dry Woven 155 
Samia Dridi 



VI Contents 
 

Section 3 Applications of FEA in  
“Wave Propagation and Failure-Analysis” 177 

Chapter 8 Perfectly Matched Layer for Finite Element Analysis  
of Elastic Waves in Solids 179 
Koji Hasegawa and Takao Shimada 

Chapter 9 Modeling Dynamics Behaviour of Materials:  
Theoretical Framework and Applications 199 
Giovanni Leonardi and Michele Buonsanti 

Chapter 10 Finite Element Analysis Applications  
in Failure Analysis: Case Studies 217 
Ahmad Ivan Karayan, Deni Ferdian, Sri Harjanto,  
Dwi Marta Nurjaya, Ahmad Ashari and Homero Castaneda 

Section 4 Applications of FEA in  
“Machine Elements Analysis and Design” 235 

Chapter 11 Development of Graphical Solution to Determine  
Optimum Hollowness of Hollow Cylindrical Roller  
Bearing Using Elastic Finite Element Analysis 237 
P.H. Darji and D.P. Vakharia 

Chapter 12 Finite Element Analysis Coupled with Feedback  
Control for Dynamics of Metal Pushing V-Belt CVT 261 
Toshihiro Saito 

Chapter 13 Overview in the Application of FEM in Mining  
and the Study of Case: Stress Analysis in Pulleys  
of Stacker-Reclaimers: FEM vs. Analytical 277 
Jairo A. Martins and István Kövesdy 

Chapter 14 Optimization and Improvement  
of Throwing Performance in Baseball  
Pitching Machine Using Finite Element Analysis 297 
Shinobu Sakai and Hitoshi Nakayama 

Section 5 Applications of FEA in “Machining and Product Design” 325 

Chapter 15 Finite Element Analysis of Machining Thin-Wall Parts:  
Error Prediction and Stability Analysis 327 
YongAn Huang, Xiaoming Zhang and Youlun Xiong 

Chapter 16 Concurrent Process-Product Design Optimization  
Using Coupled Nonlinear Finite-Element Simulations 355 
Ali Najafi and Masoud Rais-Rohani 



 





 

 
 

 
 
 
Preface 
 

The advent of high-speed electronic digital computers has given tremendous impetus 
to all numerical methods for solving engineering problems. Finite element analysis 
(FEA) form one of the most versatile classes of such methods, and were originally 
developed in the field of structural analysis but now it has been extended as a general 
method of solution to many complex engineering and physical science problems. In 
the past few decades, the FEA has been developed into a key indispensable technology 
in the modeling and simulation of various engineering systems. In the development of 
an advanced engineering system, engineers have to go through a very rigorous 
process of modeling, simulation, visualization, analysis, designing, prototyping, 
testing, and finally, fabrication/construction. As such, techniques related to modeling 
and simulation in a rapid and effective way play an increasingly important role in 
building advanced engineering systems, and therefore the application of the FEA has 
multiplied rapidly.  

This book collects original and innovative research studies on recent applications of 
Finite Element Analysis in mechanical engineering through original and innovative 
research studies exhibiting various investigation directions. Through its 16 chapters 
the reader will have access to works related to five major topics of mechanical 
engineering namely, fluid mechanics and heat transfer, machine elements analysis and 
design, machining and product design, wave propagation and failure-analysis and 
structural mechanics and composite materials. It is meant to provide a small but 
valuable sample of contemporary research activities around the world in this field and 
it is expected to be useful to a large number of researchers. 

The present book is a result of contributions of experts from international scientific 
community working in different aspects of Finite Element Analysis. The 
introductions, data, and references in this book will help the readers know more about 
this topic and help them explore this exciting and fast-evolving field. The text is 
addressed not only to researchers, but also to professional engineers, students and 
other experts in a variety of disciplines, both academic and industrial seeking to gain a 
better understanding of what has been done in the field recently, and what kind of 
open problems are in this area.  
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Control Volume Finite Element Methods for 
Flow in Porous Media: Resin Transfer Molding 

Jamal Samir, Jamal Echaabi and Mohamed Hattabi 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/46167 

1. Introduction 

The method of solution for the own problem is based on the control volume finite element 
approach which has been shown to be particularly well suited for a fast and efficient 
implementation of the Newton-Raphson linearization technique. 

The basic idea of the control volume finite element approach is to obtain a discretized 
equation that mimics the governing mass conservation equation locally. A volume of 
influence, referred to as a control volume, is assigned to each node. The discretized equation 
for a given node then consists of a term describing the change in fluid mass storage for that 
volume which is balanced by the term representing the divergence of the fluid mass flux in 
the volume. The fluid mass flux will depend on the physical properties associated with the 
volume and the difference in the value of the primary variable between the node in question 
and its neighbors.  

Discretization of the subsurface and the surface flow equations is identical except for the 
difference in dimensionality. For the sake of clarity, we present in this chapter, a detailed 
description of the control volume finite element method applied to discretize a simplified 
prototype continuity equation in Liquid composite molding (LCM) . The final discretized 
equations for all subsurface domains and for surface flow are then presented without 
providing the details of the derivation. 

Liquid composite molding (LCM) processes are routinely considered as a viable option to 
manufacture composite parts. In this process, a fibrous preform is placed in a mold. The 
mold is sealed and a liquid thermoset resin is injected to impregnate the fibrous preform. All 
LCM processes involve impregnation of the resin into a bed of fibrous network. The goal is 
to saturate all the empty spaces between the fibers with the resin before the resin gels and 
then solidifies. In RTM, resin is injected slowly and little or no heat transfer and chemical 
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reaction takes place until the mold is filled. Thus, the entire cycle can be viewed as two 
separate events, fill and subsequent cure. 

The mould filling is considered as one of the most critical and complicated stages 
throughout the entire RTM process. It has a great influence on the performance and quality 
of the final parts. However, it is hard to understand effects of the filling parameters on the 
flow front pattern during mold filling. Therefore, it is necessary to understand 
interrelationship among filling parameters, flow behavior during RTM, and physical 
properties of the final parts. 

The present study concerns the numerical modeling of resin transfer molding techniques 
(RTM). From a mechanical point of view, these processes can be treated in the same way as 
the problems of fluids in porous media. Some of authors use methods based on the systems 
of curvilinear coordinates adapted to a border. However, this approach becomes limited 
during divisions or fusion of the flow fronts [1-4]. The modeling methods currently 
elaborated are based on a control volume finite element method (CVFEM). This type of 
approach was first presented by Wang and others and was adopted in the case of thin shell 
injection molding [5]. Fracchia was the first to apply the CVFEM to simulate the RTM 
process [6] and other researchers also followed this approach [7-16]. The application of these 
methods generate several commercial software: RTM-FLOT ( no longer supported ), PAM-
RTM, MyRTM and LIMS. 

In the last years, despite the introduction of alternative methods for simulation of flow in 
porous media BEM (Trochu [17]) and SPH (Krawczak [18]), the CVFEM method has been, 
usually, used to simulate resin flow in the RTM process. However, this numerical approach 
has some inherent drawbacks. First, the flow front is difficult to define with the exact location 
because of using fixed mesh system. This problem in the resin flow front location limits the 
accuracy of CVFEM method [19]. Mass conservation problems have also been reported with 
the use of this numerical approach [20,21]. Researchers have addressed these numerical 
problems and put forward methods to improve the conventional CVFEM method [19, 22]. 

In this study, the simulation of the resin flow in the RTM process is developed by the control 
volume finite element method (CVFEM) coupled with the equation of the free surface 
location. The equation is solved at each time step using nonconforming linear finite 
elements on triangles, which allow the conservation of the resin flow rate along inter-
element boundaries [23]. At each time step, the velocity and pressure in the saturated 
domain is calculated. The effective velocity is used to update the front position. The filling 
algorithm determines the time increment needed to fill up completely at least one new 
element, then the boundary condition is updated and the flow front is advanced for the next 
iteration. The flow front is refined in an adaptive manner at each time step by using our 
mesh generator to add new nodes, to get a smoother flow front and reduce the error in the 
pressure at the flow front of a CVFEM simulation of resin flow in a porous medium. Thus, 
the position of the flow front, the time-lapse and the rate of the unsaturated zone are 
calculated at every step. Our results will be compared with the experimental and analytical 
models in the literature.  
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On the whole, our study is concerned with the simulation of isothermal filling of moulds in 
RTM process while adopting the CVFEM and VOF method, taking into account the presence 
of obstacles and the thickness variation of the reinforcement. The elaborated code allows 
calculating the position of the injection points and vents, and injection pressure in order to 
optimize the process parameters. We present a mesh generator for 1D, 2D and 2.5 D 
geometries for one or several points of injection and vents, and a numerical method for the 
simulation of the RTM process. Numerical examples are used to validate and assess the 
applicability of the developed code in the case of anisotropic reinforcements, multilayered, 
several injection points and the existence of inserts. 

2. Mathematical formalism 

2.1. Continuity equations and Darcy law 

In RTM process and when filling the mould, the resin flow passes through a bed of fibers, 
The process of injection in the mould is treated as part of the flows of fluids inside a porous 
medium.  

On the basis of partial saturation concept, the mass balance at a point within the domain of 
an isothermal incompressible fluid flow inside a fiber preform can be expressed as [24] : 

 .s q
t

   


  (1) 

Where q is the volumetric flow rate per unit area,   is the porosity and the saturation level s 
is 1 for a fully saturated node and its value ranges between 0 and 1 for a partially saturated 
point. If the transient term on the left hand side of the above equation is removed (saturate 
case), the following equation for quasi-steady state situation is obtained: 

 0
i

q
x





 (2) 

As the fluid flows through the pores of the preform, the interstitial velocity of the resin is 
given by : 

 i
i

q
v


   (3) 

Where iv  the intrinsic phase average resin velocity within the pores and   is the porosity of 
the solid.  

Using the assumptions that the preform is a porous medium and that the flow is quasi-
steady state, the momentum equation can be replaced by Darcy's law: 

 ij
i

j

K Pq
x


 


  (4) 
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where   is the fluid viscosity, ijK  is the permeability tensor of the preform, and P  is the 
fluid pressure. 

Assuming that the resin is incompressible and substituting (4) into (2) gives the governing 
differential equation of the flow : 

 0ij

i j

K P
x x

    
   

  (5) 

This second order partial differential equation can be solved when the boundary conditions 
are prescribed. Two common boundary conditions for the inlet to the mould are either a 
prescribed pressure condition: 

 ( )inlet inletP P t   (6) 

Or a prescribed flow rate condition:  

 ij
n i

j

K PQ n
x





  (7) 

Where nQ  is the volumetric flow rate and in  is the normal vector to the inlet.  

The boundary conditions along the flow front are as follows: 

 
0frontP 

  (8) 

Since the resin cannot pass through the mould wall, the final boundary condition necessary 
to solve equation (5) is that the velocity normal to the wall at the boundary of the mould 
must be zero: 

 . 0v n    (9) 

Where n is the vector normal to the mould wall. 

3. Discretization of the domain by CV /FEM -VOF method 

3.1. Delaunay triangulations  

In mathematics and computational geometry, a Delaunay triangulation for a set P of points 
in the plane is a triangulation DT (P) such that no point in P is inside the circumcircle (figure 
1)of any triangle in DT (P). Delaunay triangulations maximize the minimum angle of all the 
angles of the triangles in the triangulation; they tend to avoid triangles with high aspect 
ratio [25]. 

Suppose P = {p1,….., pn} is a point set in d dimensions. The convex hull of d+1 affinely 
independent points from P forms a Delaunay simplex if the circumscribed ball of the simplex 
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contains no point from P in its interior. The union of all Delaunay simplices forms the 
Delaunay diagram, DT (P). If the set P is not degenerate then the DT (P) is a simplex 
decomposition of the convex hull of P.  

The geometric dual of Delaunay Diagram is the Voronoi Diagram, which consists of a set of 
polyhedra     V1, . . . , Vn, one for each point in P , called the Voronoi Polyhedra. 
Geometrically, Vi is the set of points      dp whose Euclidean distance to pi is less than or 
equal to that of any other point in P. We call pi the center of polyhedra Vi. For more 
discussion, see [26, 27]. 

The DT has some very desired properties for mesh generation. For example, among all 
triangulations of a point set in 2D, the DT maximizes the smallest angle, it contains the 
nearest-neighbors graph, and the minimal spanning tree. Thus Delaunay triangulation is 
very useful for computer graphics and mesh generation in two dimensions. Moreover, 
discrete maximum principles will only exist for Delaunay triangulations. Chew [28] and 
Ruppert [29] have developed Delaunay refinement algorithms that generate provably good 
meshes for 2D domains. 

 
Figure 1. A Delaunay triangulation in the plane with circumcircles. 

3.2. Discretization domain  

In processes such as Resin Transfer Moulding (RTM), numerical simulations are usually 
performed on a fixed mesh, on which the numerical algorithm predict the displacement of 
the flow front. Error estimations can be used in the numerical algorithm to optimize the 
mesh for the finite element analysis. The mesh can also be adapted during mould filling to 
follow the shape of the moving boundary. In CVFEM, the calculation domain is first 
discretized using finite elements, and then each element is further divided into sub-
volumes. For the discretization of the calculation domain in FEM, we developed a mesh 
generator (figure 2) allowing to generate 2 and 2.5 dimensional, unstructured Delaunay and 
constrained Delaunay triangulations in general domains.  
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Figure 2. Discretization of calculation domain 

3.3. Domain discretization CV/FEM 

To use the method CV/FEM coupled with VOF, the mould is first divided into finite 
elements. Around each nodal location, a control volume is constructed by subdividing the 
elements into smaller volumes. These control volumes are used to track the location of the 
flow front.  

The calculation domain is in a finite number of triangular elements. After connecting the 
centroides of the elements with the middles of the elements borders, the calculation domain 
another time being divided in a number of polygonal control volume, as indicated in figure 
3. The borders of any element of the control volume constitute the control surface.  

 
Figure 3. Discretization of the calculation domain during CV/FEM 

3.4. Resin front tracking 

The control volumes can be empty, partially filled, or completely filled. The amount of fluid 
in each control volume is monitored by a quantity called the fill factor. It is the ratio of the 
volume of fluid to the total volume of the control volume. The fill factor takes values from 0 
to 1 where 0 represents totally empty and 1 represents totally full. The control volume 
method tracks the flow front by determining which control volumes are partially filled and 
connecting them to form the flow front. The numerical flow front is composed from the 
nodes with partially filled control volumes as shown in figure 4. The location of the fluid in 
the control volume cannot be identified, therefore the exact shape of the flow front is not 

              Node 
              Elements rims 

              Control Surface 
              Control Volume
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known. Thus, the mesh density can affect seriously the accuracy of numerical solution of the 
flow front. 

For any control volume and after integration equation 5, we obtained the following 
relationship: 

 0ij ij
cv cs

i j i

K KP Pd n ds
x x x 

       
    

 


  (10) 

Where s,Ω, n


 are the control surface, the control volume and the normal vector of the 
control surface, respectively. CV and CS represent the control volume and the control 
surface domains respectively. 

 
Figure 4. Treatment of the flow front during the fixed meshing method. 

Moreover, in every iteration, the calculation matrix contains only elements that have at least 
one node with a filling ratio unity f=1. This approach requires a rigor during the 
development of code. However, the time of treatment of the problem is ameliorated.  

4. Numerical simulation 

4.1. Pressure 

During the resolution of the pressure field, we adopted Galerkin’s approximation to 
represent the distribution of the field of pressure.  

Using the procedure outlined by Reddy [30], the finite element formulation of Equation (5) 
was found to be: 

    e e e
ij j iK P F   

  (11) 

Where 

 
e

je i
ij

K
K d

x x


 





 

   (12) 

             Node
            Experiment front 
            Numerical 

              f = 0 
              0 < f < 1  
              f = 1
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And 

 
e e

e
i i n iF f d Q d

 
         (13) 

Here e  is the domain of an element. e  is the surface of an element, e
jP  is the pressure at 

each node, f is a volumetric source term, nQ  is a specified fluid flux through the face of the 
element, and  i  is a linear interpolation function. 

4.2. Velocity   

After the pressures are calculated, the velocities are calculated at the centroid of each 
element using the volumetric flux equation 4 : 

 ij
i

j

K Pv
x


 


   (14) 

4.3. Calculation of the parameters of filling  

The control volume method tracks the flow front by identifying the controls volume 
partially filled, and connecting them to form the flow front. The numerical flow front is 
made from the nodes with the partially filled control volumes.  

4.3.1. Flow rate calculation  

It is assumed that the velocity of the fluid is constant throughout each element (figure.5). 

 
A ij

en e en o
j

K PQ v a n ds
x


   



  (15) 

Where enQ is the volumetric flow rate in the control volume (n) from element (e), env   is the 
fluid velocity in the element, and ena  is the area vector for the sub-volume. 

 
Figure 5. Calculation of the filling velocity (CV/FEM) 
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4.3.2. Fill factor calculations 

After the flow rates in each control volume have been calculated, the fill factors can be 
updated. Given the current time step, the fill factors from the previous step, the calculated 
flow rate, and the volume of each CV, the new fill factors can be calculated with: 

 1i i e en
n n

n

t Q
f f

V
 
     (16) 

where nf  is the fill factor, t  is the time step, nV  is the volume of the control volume, and 
the superscripts indicate time level. 

4.3.3. Time step calculation 

The time step for the next iteration must be calculated before the solution can proceed. The 
optimal time step would be where the fluid just fills one control volume. If a larger step 
were chosen, the flow front would over-run the control volume and a loss of mass from the 
system would result. The time to fill the partially filled control volume “n” is calculated 
with the following relation: 

 
(1 )n n

n
e en

f V
t

Q


 


  (17) 

Once nt  has been calculated for all the partially filled control volumes, the smallest t  is 
chosen as the time step for the next iteration. 

5. Adaptive mesh  

The numerical schemes used in mould filling simulations are usually based on a time 
dependent resolution of an unsteady (free surface) boundary value problem. The boundary 
of the filled area in the mould cavity is constantly evolving, and it is difficult to generate a 
mesh suitable for all the successive calculation steps of a filling simulation. The fluid front 
cannot be approximated with a fine precision with an isotropic mesh. Such a mesh would 
have to be very fine everywhere in the geometrical domain in order to provide an accurate 
approximation. This would lead to time consuming calculations, although a fine mesh is 
required only in the vicinity of the flow front and near the inlet gates. For this reason, 
several researchers have proposed to construct a new mesh of the fluid saturated domain at 
each time step (Bechet et al. [31] for Eulerian scheme, Muttin et al. [32] for Lagrangian 
schemes). This approach is long in terms of computer time and rather complex, especially in 
the case of obstacles, merging flow fronts and for 3D problems Kang and Lee [19] proposed 
an algorithm, referred to as the Floating Imaginary Nodes and Elements (FINE) method, to 
get a smoother flow front and reduce the error in the pressure at the flow front of a CVFEM 
simulation of resin flow in a porous medium. With the FINE method, imaginary new nodes 
were added at the estimated flow front and the flow front elements were divided into two 
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separate regions: the area of resin and the area of air. Thus, the flow front element was 
refined in an adaptive manner at each time step. In this study, the generation of the mesh is 
realized by a code developed by our team, included like a module of the code of numerical 
simulation. The mesh generator allows to discretize the field in unstructured triangular 
elements with possibility of local refinement (static and dynamic) and inclusion of inserts. 
The development of the mesh generator code and its use in our solution allows the 
refinement of the critical zone (0<f<1) in each iteration. 

In the CVFEM process, the numerical flow front is composed from the nodes with partially 
filled control volumes. So, since the location of the fluid in the control volume is not known, 
the exact shape of the flow front cannot be identified. In our numerical code, for the zone 
positioned in the flow front, we have developed a technique of local refinement. This 
technique uses an iterative method to refine repeatedly an initial triangulation of Delaunay, 
by inserting new nodes in the triangulation until satisfying size criteria and the shape of the 
elements (figure.6). The number of calculation points necessary to characterize accurately 
the deformations of the flow front decreases, and thus, the numerical computing time is 
reduced.  

The refinement of position and shape of the front flow consists in adding the new nodes to 
the initials meshes (triangulation of Delaunay) in the zone of the flow front. The integration 
of these refined nodes, in the computer code, is conditioned by the value of the filling rate. 
The algorithm adopted for the mesh generator makes possible to generate first the standard 
Delaunay elements and initial nodes for the calculation domain. Then, in a second time, 
these elements are re-meshed by a technique of addition of nodes (figure.7). The criteria to 
be respected during refinement are:  

The meshing coincides at the interfaces: the meshing technique used implies the 
coincidence of the grid at the interfaces between the neighbouring elements (of the first 
standard grid). The triangulation of Delaunay is based directly on the contour nodes 
discretization which are discretized only once.  

An automatic identification of the nodes and the elements of refinement: During the 
refinement of the meshes created, the initial nodes and elements are identified by a 
traditional technique of programming called “the coloring”. This technique consists in 
affecting a particular code to define the elements of the sub-domains. During the resolution 
of the equations of the linear system, the integration of the nodes and elements resulting 
from refinement, in the numerical code, is conditioned by the value of the filling rate. Only, 
the elements with partially filled nodes are taken into account.  

Association of the sub-domains to the principal element: During the refinement of the 
initial elements, the numerical algorithm affects a code to each sub-domain realized by the 
mesh generator. This code corresponds to the principal element generating the sub-
domains. Thus, the mesh code generates a structure of data that permits to associate the sub-
domains, resulting from the refinement process, to their principal element. 
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Figure 6. Refinement of the triangular element. 

 

 
Figure 7. Refinement by inserting new nodes in the triangulation . 

In the present approach, a local mesh generator module has been developed and integrated 
to the principal code of numerical simulation of the RTM process. This approach is useful to 
carry out the instruction of the meshing at each step time during the execution of the 
program, which improves calculation time. The meshing technique adopted is based on two 
concepts. The first one is the restricted triangulations of Delaunay and the second is the 
Delaunay refinement applied to elements of the flow front (figure.8).  

Starting from the reference level of meshing G0, we define for each element E1,ps, the 
condition of refinement as : 
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Figure 8. Identification of the elements for refinement 

 
 

 

 
Figure 9. Example of numerical simulation in RTM process using refinement technique. 
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The operation for detecting which elements of G0 must be refined, is repeated at each 
iteration of the resolution process. If the condition   has value “true” for an element E1,ps of 
the level G0, the numerical algorithm applies the refinement process and create sub-
domains. Thus, the element E1,ps is divided into an number of sub-domains (7 in figure.9), in 
each direction to preserve good properties of connection between the domains, which 
creates a new meshing level Gl. The solutions at the refined Gl are initialized by a 
prolongation of the same numerical algorithm of the G0 level. The system of equation is 
solved successively at each level of grid. Each refined element has a pressure boundary 
conditions of Dirichlet type. These operations are repeated at each iteration of the numerical 
resolution until the mould is completely filled.  

The advantage of this technique is to increase the local precision of calculations while 
preserving the properties of a meshing. On the other hand, the resolution process at each 
meshing level can be carried out starting from the same system of equations, the same 
approximations and the same solver. 

6. Numerical algorithm 

Large complex structures need computational models that accurately capture both the 
geometric and physical phenomena. This may involve the use of flow simulations as 
warranted by geometry, thickness, and fiber preforms employed. There also exists a need 
for accuracy improvements by refining the discretization of the computational domain. All 
these have serious impact on the computational time and power requirements. Physical 
modeling and computational algorithms and methodologies play an important role in 
computational times. For large-scale computations, it becomes critical to have algorithms 
that are physically accurate and permit faster solution of the computational domain. It is not 
only essential to design efficient parallel algorithms, data structures, and communication 
strategies for highly scalable parallel computing, it is also very important to have improved 
computational algorithms and methodologies to further improve the computational 
performance of large-scale simulations.  

In this study, the algorithm adopted uses techniques for the optimization of the execution 
time. For example, the management of the memory by the dynamic allocation of the tables 
and matrices allow the optimization of the resources machines. Also, the utilization of the 
pointers in the definition of the variables of the problems ensures the code the adaptation to 
the size of the data to be treated. In the same way, the adoption of algorithm of the sparse 
matrix for the inversion impacts the processing time seriously. Also in every iteration, the 
calculation matrix is dynamic and contains only elements that have a node with a filling 
ratio unity f=1. This approach imposes a rigor during the development of code, however, the 
time of treatment of the problem is ameliorated.  

In this study, the numerical adopted is based on the various computational steps involved 
in adaptive meshing that accurately capture both the geometric and physical phenomena., 
CVFEM methodology for the update of the filled regions and refinement technique for flow 
front advancement are summarized below. 
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Figure 10. Numerical Algorithm of simulation of filling of moulds in RTM process 
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7. Results and discussion 

7.1. Adaptive meshing 

In the first case (figure.11), we present examples prove the accuracy provided by our 
adaptive meshing technique. These examples treat an injection mold for radial rectangular 
400mmx400mm with a uniform thickness of 4mm. The injection is located at the center of 
the mold. The meshing generates the following data (table.1). The running time is related to 
a machine CPU 2Ghz Core Duo 2GB RAM 
 

 

Using 
Technique
Adaptive 

Mesh 

Number of  
principal 
elements 

Number of  
secondary 
elements 

Number
of  

principal 
Nodes 

Number of  
secondary 

Nodes 

Time 
Consuming 

Example  
A No 160 0 97 0 12s 

Example  
B Yes 160 800 97 506 27s 

Example 
C Yes 160 3520 97 1972 97s 

Table 1. Data of meshing 

 

 
Figure 11. Numerical simulation with different type of meshing 

In the second case (figure.12), we present two examples for comparison. These examples are 
related to the gain of the execution time for our adaptive meshing technique. These two 
examples treat an injection mold for radial rectangular 400mmx400mm with a uniform 
thickness of 4 mm. The first example is related to a discretization without adaptive meshing. 
This model has the same level of precision as the second example related to the adaptive 
mesh (same total number of nodes and elements). The meshing generates the following data 
(table.2). The running time is related to a machine CPU 2Ghz Core Duo 2GB RAM 
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Using 
Technique 
Adaptive 

Mesh 

Number of  
principal 
elements 

Number of  
secondary 
elements 

Number 
of  

principal 
Nodes 

Number of  
secondary 

Nodes 

Time 
Consuming 

Example  
A No 3680 0 2069 0 452s 

Example 
B Yes 160 3520 97 1972 97s 

Table 2. Data of meshing 

 

 
Figure 12. Numerical simulation with different type of meshing 

7.2. Validation of the results relating to RTM flow with uniform thickness 

In the validation examples presented, the moulds used, have a rectangular cavity, with 
dimensions: (1000 × 200) mm2 and (400 × 400) mm2, respectively. The first example is relative 
to the unidirectional validation (1D) of our numerical results, whereas the second is used in 
radial injection (2D). The fluid viscosity μ = 0,109 Pa.s, the pressure injection Pinj = 2 × 105 Pa, 
the permeability K = 2,65 × 10−10 m2 and the porosity is φ= 0,696.  

7.2.1. Unidirectional validation 

The mould used has a rectangular cavity of dimensions (1000 × 200) mm2, the thickness is 
uniform and equal to 4 mm. The resin is injected from left side of the mould and the vents 
are placed on the right-side of the cavity. Under these conditions, the kinetics of the flow can 
be obtained analytically by the equations of table.3. The comparison of the three kinetics of 
the front flow obtained is presented in figure 13. It shows a good concordance with the 
solution obtained. 
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Pressure Front’s position Filling time 

  
Table 3. Analytical solutions of unidirectional simulations in RTM  

 
Figure 13. Unidirectional Validation  

7.2.2. Bidirectional validation 

The mould used has rectangular cavity of dimensions 400x400 mm2, and the thickness is 
uniform 4mm. The resin is injected from the central point of the mould, the reinforcement is 
isotropic and the permeability is the same one in the various directions. Under these 
conditions, the form and the position of the flow front can be obtained analytically by the 
equation 18. The comparison of the two front’s kinetics (analytical and numerical) is 
presented in figure.14. It shows a good concordance with the solution obtained. 
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With rf  is the radius of the front flow in a time t. 

7.3. Validation of the results relating to RTM flow with variable thickness 

7.3.1. Analytical validation 

RTM process can be used to produce pieces with complex geometry. In the industry of the 
composite, the plates employed often consist of reinforcements with a variable number of 
plies and stacking sequences. A correct simulation of this process requires taking into 
account all these parameters. Lonné makes a modeling according to a formalism derived 
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from the Thomson-Haskell method for the prediction of these geometrical variations on the 
ultrasound transmission [33].  

 
Figure 14. Bidirectional Validation with K11=K22=K 

The reinforcement variation generates different pressures when closing the mold. Under the 
impact of the compressibility or the relaxation of the mold plates, a variation occurs in the 
volume and the pores distribution through the fabric and influences permeability and 
porosity. The mechanical performance of resin transfer molding depend on the fiber volume 
fraction [34], microstructure of the preform [35–36], void content [37], and impregnation 
parameters [38]. In most cases, mechanical properties of composite parts can be improved 
by increasing fiber volume fraction. Higher fiber volume fractions, however, require 
increased injection pressure and longer time to fill up the mould, which may significantly 
affect the properties of the final part. Patel et al. [39] molded composite parts containing 
glass fibers at constant injection pressure.  

The study of Chen and al [40] showed that the initial compressibility of reinforcements is 
essentially related to that of the pores. This compressibility or « relaxation » effect directly 
influences the global volume and the distribution of the pores. During the mold closing, the 
variation of the reinforcement thickness generates, under the compressibility or the 
relaxation effects, a variation of the pores volume and their distribution through the fabric. 
The works of Buntain and Bickerton [41] were oriented to the way that compressibility 
affects permeability. Their results clearly showed that permeability (a property required to 
be perfectly controlled for a correct simulation of the flow front and the distribution of the 
pressure) was closely related to the pore volumetric fraction. Several models have been 
proposed to estimate the value of the permeability for various porous media. Capillary 
models such as those proposed by Carman [42] and Gutowski et al. [43] use the fiber radius 
and porosity to predict the permeability, but several discrepancies with experimental data 
have been reported [43–47]. Theoretical models have also been developed for different 
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idealized media structures [44–47]. Most models may not give accurate prediction of 
permeabilities since fibrous mats used in RTM are often more complex than the idealized 
unit cell patterns used in theoretical derivations. Thus due to the lack of adequate predictive 
models, permeability of RTM preforms are usually determined experimentally. 

A number of permeability measurement methods have been developed; however, there is 
no standardized measurement technique for RTM applications. Trevino et al. [48] and 
Young et al. [49] determined unidirectional permeability using two pressure transducers at 
each of the inlet and the exit in conjunction with an equation based on Darcy’s law applied 
to their flow geometry. Calhoun et al. [50] presented a technique based on placing several 
pressure transducers at various locations inside the mold. Adams and Rebenfeld [51–53] 
developed a technique that quantifies the planar permeability using the position and shape 
of the advancing resin front as a function of time. A transparent mold was used to enable 
the monitoring of the advancing front. Other techniques based also on the observation of the 
moving resin front are common in the literature [43,51-59]. However, transparent mold 
walls may not have enough rigidity to avoid deflection, which has been shown to perturbate 
the measured permeability values [45,48,49,54]. In this context, the University of Plymouth 
radial flow permeability appartus was enhanced by the use of a laminate of two 25 mm 
toughened float glass sheets [60] as the upper mould tool to achieve a similar stiffness to the 
aluminium mould base [61].  

In this study, the variation of the plies number (figure.15.a) and the stacking sequence are 
modeled by the variation of permeability and porosity. During the standard approach, these 
parameters are defined as an intrinsic property of the global discretized domain. In our 
approach, the permeability and porosity are defined at the level of the element. The 
comparison of the two kinetic fronts (analytical and numerical) is presented in figure.15.b ; it 
shows a good concordance with the solution obtained. 

The analytical model for this type of reinforcement is indeed the prolongation of the linear 
model already adopted in the case of a medium with isotropic permeability. To ensure the 
accuracy of our numerical results, the elements of the initial meshing belong only to the one 
of the two zones. Also, in the static refinement of meshing, the creation of the new refined 
elements respects the condition of the uniformity of the permeability within the element (the 
element of refinement must belong only to the one of the two zones).  

In addition, to illustrate the thickness effect, we present within the framework of the 
analytical validation, the case of a radial flow through a multi-thickness reinforcement.  

In the setting of a bi-dimensional flow, we used the reinforcement with variation of the 
number of plies. The mould cavity had a uniform thickness. 

1. Reinforcement with a constant thickness (10 plies) (Figure 16.a) 
2. Reinforcement with half  10 plies and half 20 plies (Figure 16.b) 
3. Reinforcement with ¼ 10 plies and ¾ 20 plies (Figure 16.c) 
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Figure 15. a) Reinforcement with multiple thickness, b) Evolution of the pressure-position for multiple 
thickness 

For a reinforcement with uniform thickness (figure16.a), the permeability in the principal 
directions is constant. The shape of the flow front for a radial injection is a circle whose 
center is the point of injection. For the case of two different reinforcements thicknesses 
(figure 16.b, and 16.c), the position and the shape of the flow are variable according to the 
resistance presented by the fabric (permeability).  

Thus, for the figure 16.b where each half of the reinforcement is characterized by a fixed 
value of the permeability, it is quite clear that the solution of the Darcy law concerning the 
shape of flow front, in each zone, has a form of half-circles spaced according to the value of 
the permeability. The connection between the two shapes respects the continuity of the flow 
front. Finally, and in order to ensure the required precision, we proceeded to each step of 
time, with a refinement in the zone of connection of the two parts. The same approach is 
adopted for the figure16 .c. 

(a)

(b) 
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Figure 16. a) Flow Front for a bi-dimensional injection with Reinforcement with a constant thickness,  
b) Flow Front for a bi-dimensional injection with Reinforcement half  10 plies and half 20 plies, c) Flow 
Front for a bi-dimensional injection with Reinforcement ¼ 10 plies and ¾ 20 plies 

7.4. Simulation of the pressure distribution for a multiple – Thickness 
reinforcement 

The pressure distribution directly influences the injection pressure, the time needed to fill 
up the mould, the position of the injection points and vents and especially the mechanical 
properties of the final piece. The approach adopted by our team, use the permeability at the 
element’s level. The thickness variation of the element directly influences its permeability 

(a)

(b)

(c) 
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and its porosity. The integration of these parameter’s variation inside the code of resolution, 
gives more precision. 

The model we treated is a wiring cover made of glass fibers and an Isophthalic Polyester 
resin. The model has the specificity of including a square insert inside the piece, with the 
possibility to vary the thickness around the insert (square zone, Figure 17). 

 
Figure 17. Piece with insert and reinforcement multiple thickness 

During the moulding in RTM process, the resin injected infiltrates in empty spaces between 
fibers. However, a minor modification of the characteristics of the preform in specific places 
(around the insert for example), can cause significant deviations in the flow and the results 
on the final properties of the part can be disastrous generating the rejection of the whole 
process.  

In order to simulate the filling process for 3D Dimension, logically a 3D model would be 
required. Since the thickness of composite parts is often much smaller than its length and 
width, thin part assumptions can be used for these simulation models [62]. For example, the 
resin flow in the thickness direction (here denoted as z) is neglected. Therefore, these 
models, although they describe 3D geometries, they are often called 2.5 D flow models [63].  

The figures presented in 18.a, 18.b and 19 clearly show the impact of taking into account the 
variation thickness on the accuracy of the simulation of the flow front and the distribution of 
the pressure for 2.5 D models. These elements are paramount to control the parameters of 
the moulding and to obtain the required properties of the final part. the increase in thickness 
on a particular area by inserting new plies of reinforcement, leading to decreased 
permeability and increased porosity.  

During numerical resolution, after the pressures are calculated, the velocities are calculated 
at the centroid of each element. Thus, given the reduced permeability and increased 
porosity, the velocity decreases while increased the thickness. In Figure 18.b we note the 
delaying of flow front in this area. 
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Figure 18. a) 2D Simulation without taking into account the effect of thickness variation, b) 2D 
Simulation when taking into account the effect of thickness variation   

 
Figure 19. 2.5D simulation of pressure distribution  with thickness variation 

(a)

(b)
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The approach adopted during this study ensures flexibility during the simulation of the 
heterogeneities of the problem. The properties of the medium are calculated at the level of 
the element of the mesh. Having developed an adaptive mesh generator specific to the team, 
we are able to ensure a better adaptation of the elements of grid to describe physical 
specificities generated in each problem. The results obtained on the figures of this paragraph 
show the relevance of the present approach. 

8. Conclusion 

During this study, we developed a mesh generator and a numerical code to simulate the 
filling of an isothermal mould in RTM process, by adopting the CV/FEM and VOF method. 
An adaptive static meshing to model the variation of the thickness, and dynamic to refine 
the flow front are used. This approach is useful to carry out the meshing at each step of time 
during the resolution process, which improves precision and calculation time. The 
algorithm adopted treats permeability and porosity at the level of the element of the mesh. 
The effects of the variations of the plies number and the stacking sequence, around the 
inserts for example, are modeled by the variation of permeability and porosity. The flows 
around obstacles and through the reinforced area near inserts are simulated by the present 
formalism with a local refinement of the meshing. The results obtained during the numerical 
simulation show a good concordance with the results: analytical, experimental and 
numerical. We can note the effectiveness of the numerical model developed in the predicted 
flow front and the distribution of pressure. An excellent reproduction of the form of the 
front and a good precision of its position are obtained. In our next studies, we will be 
interested in applying a similar approach to simulate saturation effects. 
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1. Introduction 

For the analysis of collisional plasmas one needs to analyze the different constituent 
particles which characterize these discharges, mainly the charged particles such as electrons, 
positive and negative ions as well as the neutral gas particles. Due to the presence of the 
charged particles, one needs to calculate also the electromagnetic fields within the plasma 
which are characterized by the Maxwell’s equations. The general Maxwell equations can be 
characterized by substituting a scalar and vector potential equations using Lorentz Gauge 
transformation to calculate the electric and magnetic fields. In the case of electrostatic fields, 
Maxwell equations reduce to Poisson equation that characterizes the electric field in the 
absence of a magnetic field, whereas in the magnetostatic case, a steady current exists 
invariant in time with the magnetic field related quantities considered constant. At high 
frequencies, the electromagnetic wavelength is small and if one is outside this single 
wavelength, the electric and magnetic field are directly coupled to each other such that if 
one of the two parameters is calculated, then the other is known. In the case of low 
frequencies, where the wavelength is high, if you are within the near field region, the 
electric and magnetic fields are completely independent, therefore the solution of both 
electric and magnetic field equations is necessary to calculate the electric and magnetic field 
distribution within the collisional plasma.     

The charged particles behaviour is characterized using the continuity conservation 
equations of mass, momentum and energy for electrons, positive and negative ions 
including convective, diffusive and source term phenomena. Regarding the behaviour of the 
neutral gas particles within collisional plasmas, the Navier-Stokes equations, which are the 
conservation equations for mass, momentum and energy for the neutral gas particles need 
to be solved including convective, diffusive as well as source terms phenomena such as 
shear stresses, momentum transfer by elastic collisions, Lorentz forces, Joule heating and 
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thermal conduction. Having established the necessary equations, the implementation of the 
solution procedure for solving Poisson, charged particle continuity and Navier-Stokes 
equations is presented. Thereafter, the Finite Element-Flux Corrected Transport method (FE-
FCT) formulation follows in two-dimensional Cartesian, two-dimensional cylindrical 
axisymmetric and three-dimensional Cartesian coordinates, comprising of the predictor-
corrector step based on the Taylor-Galerkin finite element method to calculate the high and 
low order schemes. The validation of the fluid flow equations using the FE-FCT is 
performed using the shock tube type problem, the shock wave incident on a wedge test case 
and the energy source term that result in sound and shock wave generation. Having 
validated the fluid model thoroughly, an adaptive mesh generation technique is discussed 
which reduces computational needs significantly and at the same time guaranteeing the 
stability and accuracy of the results. Finally, different collisional plasma configurations are 
analyzed including avalanche, primary and secondary streamer propagations and finally 
heating effects in constant voltage Dielectric Barrier Discharges and normal and abnormal 
glow discharges in ambient atmospheric air.  

2. Model description 

The complete plasma model in its multidimensional form consists of the Maxwell equations 
to account for the electromagnetic field, the continuity equations for charges to account for 
the charged particles (electrons, positive and negative ions) and the Navier-Stokes equations 
to account for the neutral gas charges. 

2.1. Maxwell’s equations 

The Maxwell equations consist of the following four differential equations in macroscopic 
form: 

   D c
  (1) 

   B 0   (2) 

 
  


BE
t

 (3) 

 
  


DH J
t

  (4) 

where D is the electric field strength, B is the magnetic flux density, E is the electric field 
strength, H is the magnetic field strength, ρc is the net charge density, J is the current density 
and t is the time. 

Equation (1) is known as the Gauss’s law equation for electricity, equation (2) the Gauss’s 
law for magnetism, equation (3) as the Michael-Faraday’s or Faraday’s law of induction and 
finally equation (4) shows the Ampere’s circuital law with Maxwell’s correction.  
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where: 

  J E u B( )x   (5) 

   D Ec  (6) 

  B Hc  (7) 

where εc and μc are the dielectric and magnetic permeability constants. One can define a 
vector potential A that B is the curl of:  

  B Ax  (8) 

which satisfies equation (2) above of Maxwell equations which basically states that no 
magnetic monopoles exist such that: 

     .B .( A) 0x  (9) 

since the divergence of a curl is zero satisfying the magnetic monopole constraint.  

Now by substituting equation (8) into Faraday’s equation (3), one gets: 

 
 

 

A) E( x x

t  (10) 

By rewriting equation (10) above, one gets: 

 


  

AE( ) 0x
t  (11) 

The term in the parenthesis of equation (11) above has no curl present implying that a 
potential V exists such that: 

 


  

AE V
t  (12) 

which gives the electric field to be: 

 


  

AE V
t  (13) 

Substituting equation (13) into Amperes law of electromagnetism equation (4) gives: 

 


   

E JB2( ) 0

c
c x

t  (14) 

where : 
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 

2 1

c c
c  (15) 

with c being the speed of propagation within the medium. From vector calculus, one has 
that: 

         B A A A2  (16) 

Substituting equation (16) above and equation (13) into equation (14) gives: 

  


  
       


A
JA A)2 2

( )
( 0

c

V
t c

t
 (17) 

which gives: 

  


 
        



A JA A
2

2 2 2
2 ( ) ( 0

c

V c c
tt

 (18) 

Rearranging equation (18) above gives: 

 


 
        



A JA A
2

2 2 2
2 2

1( ) 0
c

Vc c
tt c

 (19) 

In order to make the choice of vector potential A not arbitrary, one imposes the Lorentz 
gauge which sets the parenthesis of equation (19) equal to zero: 

 
   


A 2

1( ) 0V
tc

 (20) 

with equation (20) above becoming:  

  



   



A JA
2

2 2
2 0

c
c

t
 (21) 

Equation (21) above is Maxwell’s equation for the vector potential. On another note, by 
combining equations (1) and (13), one gets: 

 



 
      

A c

c
V

t  (22) 

which gives: 

 



 
  


A)2 ( . c

c
V

t  (23) 
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Now using the Lorentz Gauge tranformation from equation (20) into equation (23) above 
gives: 

 






  


)22

1(
c

c

V
tcV

t
 (24) 

 



   



2 2
2 2

2 0c
V cc V
t

 (25) 

Finally, equations (21) and (25) are respectively the vector and scalar potential equations of 
the Maxwell’s equations which when solved by using the equations (26) and (27): 

  B Ax  (26) 

and: 

 
  


AE V
t

 (27) 

one can calculate the electric and magnetic field of time-dependent Maxwell’s equations. 

2.1.1. Electrostatic case 

In the electrostatic case, one assumes that ∂/∂t , J, H and B are all zero, and equation (25) 
becomes:  

 


   
2

2 2 0c
cc V  (28) 

 



  2 c

c
V  (29) 

which is the Poisson equation. In the presence of no free charges, ρ = 0 and the above 
equation (29) becomes the Laplace equation: 

  2 0V  (30) 

2.1.2. Magnetostatic case 

In the magnetostatic case, there are steady currents in the system under consideration, 
which generate magnetic fields (ferromagnetic media are ignored), therefore ones sets ∂/∂t=0 
and assumes that J, H and B are constant vectors. Substituting these relations into the scalar 
and vector potential equations (21) and (25) of Maxwell’s gives:  
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 


   
2

2 2 0c
cc V  (31) 

which is again the Poisson equation:  

 



  2 c

c
V  (32) 

and: 

 


   
JA2 2 0
c

c  (33) 

 


 
JA2
2

cc
 (34) 

   A J2  (35) 

which is the magnetic equivalent of the electrostatic Poisson equation. 

2.2. Continuity equations for charges 

The continuity equations which comprise of the conservation of mass for electrons, positive 
and negative ions are described in equations (36) to (38) below: 

 


 
 eW.( )e

e e
N

N S
t

 (36) 

 


  
 pW.( )p

p p

N
N S

t
 (37) 

 


  
 nW.( )n

n n
N

N S
t

 (38) 

where Ne, Np, Nn are respectively the electron, positive and negative ion densities, We, Wp 
and Wn the corresponding velocity vectors and Se, Sp, Sn are the source terms for the 
electrons, positive and negative ions respectively, which are calculated according to 
equations (39) to (41) below: 

       e eW W| | | | .( )e e e ep e p e eS N N N N D N  (39) 

     eW| |p e ep e p pn p nS N N N N N  (40) 

   eW| |n e pn p nS N N N  (41) 
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where α the ionisation coefficient, η the attachment coefficient, βep the recombination 
coefficient between electrons and positive ions, βpn the recombination coefficient between 
positive and negative ions and De the electron diffusion coefficient. The positive and 
negative ion diffusion coefficients are omitted since their effect is negligible compared to 
electron diffusion for the time scales considered here. 

The conservation of momentum and energy density for electrons, positive and negative ions 
equations are described below in equations (42) and (43) and have the general form: 

 





     
 s

s s s
W )

WW MTs
(

.( ) .s
s s

s
P

t
 (42) 

 


 


       
  .( ) .( ) .( ( )) . .s

s s s s s s s ts s
s s

W Q W P I MT v f J E
t

 (43) 

Subscripts s, p and n represent the electron, positive and negative ions, and the various 
terms are similar to the ones used for the neutral gas particle conservation equations that are 
explained below. 

2.3. Navier-Stokes equations 

2.3.1. Navier-Stokes general form 

The Navier-Stokes equations which account for the neutral gas particles are described by 
equations (44) to (46) below: 

  
  


v.( ) S

t
 (44) 

  
     

  s
v) vv MT J B

( .( ) .
s

P x
t

 (45) 

  
        

  sv Q v I MT v J E J B).v.( ) .( ) .( ( )) . . (ts
s s

P f x
t

 (46) 

where ρ the neutral gas density, v the neutral gas velocity vector, S the neutral gas density 
source term, P the pressure, τ the shear stress tensor which comprises of the τii and τjj 
components, MTs the momentum transfer of charged to the neutral particles due to elastic 
collisions, ε the neutral gas thermal energy density, Q is the thermal conductivity term, fts 
the percentage of energy density of charged particle with subscript s that is transferred as 
thermal energy to the neutral particles due to inelastic collisions and J the current density, 
JxB is the Lorentz force and (JxB).v is the magnetic Lorentz force acting on the energy of 
the flow.  

The neutral gas density source term is calculated by:  
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       e eW W| | | | )( 2e e pn p n ep e pN N N N N NS m  (47) 

where m is the neutral gas particle mass which is constant.  

The thermal conductivity, current density and pressure are calculated respectively by 
equations (48) to (50): 

   Q k T  (48) 

  sJ Ws sq N  (49) 

 P NKT  (50) 

where k is the thermal conductivity, T is the neutral gas temperature, qs, Ns, Ws the charge, 
density per unit volume and velocity vector of charged particle s, N the number of neutral 
gas particles per unit volume and K the Boltzmann constant.   

The shear stress tensors are calculated by:   

  


   


v2(2 . )
3

i
ii

i

v
x

 (51) 

  


  
 

( )ji
ij

j i

vv
x x

 (52) 

where  the viscosity coefficient, and subscript i and j represent the different degrees of 
freedom in the different space directions. 

The momentum transfer of charged to the neutral particles due to elastic collisions MTs is 
calculated by: 

 


 
s sMT W v)(s

s
s s

qmN
m m

 (53) 

where μs is the mobility of charged particle s.   

The numerical algorithm and its implementation are presented below in two-dimensional 
Cartesian, two-dimensional axisymmetric cylindrical and three-dimensional Cartesian 
coordinates in the following sections.  

2.3.2. Two-dimensional Cartesian coordinates of Navier-Stokes 

The Navier-Stokes equations in two-dimensional Cartesian (x, y) coordinates are formulated 
as follows: 

 
  

    
    

y yx x
K LK LQ M

t x y x y
 (54) 
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





 
 
   
 
  

x

y

v
Q

v
 (55) 
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




 
    
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 (58) 

2.3.3. Two-dimensional cylindrical axisymmetric coordinates of Navier-Stokes 

The Navier-Stokes equations in two-dimensional cylindrical (r, z) axisymmetric coordinates 
are formulated as follows: 

 
   

    
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( ) ( )1 1r z r zK r K L r LQ M
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2.3.4. Three-dimensional Cartesian coordinates of Navier-Stokes 

The Navier-Stokes equations in three-dimensional Cartesian (x, y, z) coordinates are 
formulated as follows: 

 
    

      
      

y yx x z
K LK L LQ Kz M

t x y z x y z  (64) 

 








 
 
 
   
 
 
  

x

y

z

v
Q v

v
 (65) 

 








 
 

 
   
 
 

  ( )

x

x x

x x y

x z

x

v
v v P

K v v

v v
P v











 
 
 
 

  
 
 
   ( )

y

y x

y y y

y z

y

v

v v

K v v P

v v

P v








 
 
 
   
 
 

  ( )

z

z x

z y

z z

z

v
v v

Kz v v

v v P
P v

 (66) 

The two-step Lax-Wendroff technique comprising of the predictor-corrector steps is used for 
time stepping. The charged particle continuity and Navier-Stokes are discretised using 
Taylor-Galerkin Finite Elements [1], whereas Poisson’s equation using Galerkin Finite 
Elements. Accuracy and efficiency for these long calculations are a crucial factor. The Flux 
Corrected Transport method (FCT) [2-4] ensures that accurate and efficient results are 
obtained free from inaccuracies building up and from non-physical oscillations.  
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3. Implementation of the solution procedure 

The solution procedure follows the pattern shown in Figure 1 for a single time step. It 
assumes that an initial distribution of electrons and positive ions at a given neutral gas 
temperature, velocity, density and applied voltage exists. The charged particle densities at 
time n (ρn) are fed to Poisson’s equation (PO) to obtain the electric field distribution at time n 
(En). The electric field and neutral gas parameters (Nn) are used to calculate the transport 
parameters (TP) at time n (TPn). Then, the transport parameters are passed to the charge 
particle continuity equation (CON) to calculate the charge densities at time n+1/2 (ρn+1/2). 
Next, the charge densities (ρn), electric field (En) and transport properties (TPn) at time n are 
passed to the Navier-Stokes solver (NS) to calculate the neutral gas properties at time n+1/2 
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(Nn+1/2). This completes the half time step solution. Subsequently, the charge particle 
densities at time n+1/2 are passed to the Poisson solver to calculate the electric field at time 
n+1/2 (En+1/2).  The electric field and neutral gas parameters at time n+1/2 are used to 
calculate the transport properties at time n+1/2 (TPn+1/2). Consequently the transport 
properties are fed to the charged particle continuity solver to calculate the charge densities 
at time n+1 (ρn+1). Finally, the Navier-Stokes solver uses the transport parameters, the electric 
field and the charge densities at time n+1/2 to calculate the neutral gas parameters at time 
n+1 (Nn+1) and this process is repeated continuously to proceed forward in time.   

In fluid analysis, the collision coefficients and drift velocities of the charged particles can be 
calculated either using experimental or numerical techniques. Experimentally they are 
calculated as a function of the ratio of the electric field to the number of neutral gas particles 
per unit volume (E/N), depending also on the density and pressure of the neutral gas that 
has a direct effect on the frequency of collisions between the charged and neutral gas 
particles.  

Numerically, commercial software packages calculate the transport properties by solving 
the electron distribution Boltzmann equation by utilizing the collisional cross sectional data 
and such software examples are ELENDIF [5], BOLSIG [6], and BOLSIG+ [7] which are used 
to calculate the above transport parameters [8]. 

PO
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Start of Time Step
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TPCON

NS
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TP CON

n


n


n 

n+1/2


n+1/2


n+1/2


n+1


n+1


n+1/2

End of Time Step

 
Figure 1. Solution procedure of the complete model 

The charged particle continuity equations are coupled to Poisson’s equation via the electric 
field strength and to the Navier-Stokes equations via the number of neutral gas particles per 
unit volume and their pressure. Poisson’s equation is coupled to the continuity equations 
via the net charge density. As far as the Navier-Stokes equations are concerned, they are 
coupled to Poisson’s equation via the electric field strength and to the charged particle 
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continuity equations via production and loss processes, and via momentum and kinetic 
energy exchange between charged and neutral particles.    

4. Finite element formulation of continuity and Navier-Stokes fluid 
equations 

4.1. Two-dimensional Cartesian coordinates 

The fluid transport equations take the general form in the two-dimensional Cartesian 
coordinates as: 
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where 

Q is the unknown or independent variable, 


K and 


L are respectively the convective 

and diffusive fluxes, 


M  is the source term. 

The Taylor Galerkin scheme is used to develop the FE-FCT scheme, with the time 
discretization preceding the space discretization. The time stepping is performed in two 
steps, the advective predictor and the corrector step. 

4.1.1. Advective predictor step 

The advective predictor step is formulated using the Taylor series expansion for the 

unknown variable  

Q  at a first order approximation, thereby resulting in the half time 

values of the independent variable
 1/2n

Q : 
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where Ae is the area of a triangular element, Δt is the time step, bi and ci are the linearly 
interpolated piecewise shape functions. The velocities at time (n+1/2) are assumed to be the 
average value of the nodal velocities at time n. 

4.1.2. Corrector step 

The corrector step utilizes the Taylor series expansion for the full time step to the second 
order approximation to get: 
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where Dc is the consistent mass matrix, 

1/2n

nK and 


n
nL are the convective term at time 

n+1/2 and diffusive term at time n fluxes outward in the normal direction of the boundary, 
Γe is the boundary surrounding element e and e

iN is the interpolation function. Writing the 
above equation in the general form results in: 
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n
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where 



n

Q is the vector of nodal increments, nB is the vector of added element 
contributions to the nodes. Instead of using a consistent mass matrix, a lumped mass matrix 
(Dl) is used for computational purposes, resulting in: 
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where α is an integer representing the iteration number. 

To calculate the low order scheme, mass diffusion is added of the form: 
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to get the low order scheme: 
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where cd is the variable diffusion coefficient and is dependent on the mesh size, time step and 
speed of an element. A detailed analysis of the above formulation procedure is found in [9].  

4.2. Two-dimensional cylindrical axisymmetric coordinates 

The fluid transport equations take the general form in the two-dimensional cylindrical 
axisymmetric coordinates as: 
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where 


rK


zK


rL


rL are respectively the radial and axial convective and diffusive fluxes, and 
r is the radial coordinate in cylindrical axisymmetric coordinates. 
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The Taylor Galerkin scheme is used to develop the FE-FCT scheme, with the time 
discretization preceding the space discretization. The time stepping is performed in two 
steps, the advective predictor and the corrector step. 

4.2.1 Advective predictor step 

The advective predictor step is formulated using the Taylor series expansion for the 

unknown variable  

Q  at a first order approximation, thereby resulting in the half time 

values of the independent variable
 1/2n

Q : 
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where Ae is the area of a triangular element, Δt is the time step, bi and ci are the linearly 
interpolated piecewise shape functions. 

where '
ir  is given by: 
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where 


er is the r-coordinate of the centroid of the element e given by: 
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The velocities at time (n+1/2) are assumed to be the average value of the nodal velocities at 
time n. 

4.2.2. Corrector step 

The corrector step utilizes the Taylor series expansion for the full time step to the second 
order approximation to get: 
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The above discretization results in the following equations: 



 
Finite Element Analysis – Applications in Mechanical Engineering 46 

 


 
' 'n n

cD Q B  (81) 

where: 
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and  
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where 

r denoting a matrix of 



er entries everywhere, 
'

cD is the consistent mass matrix and 

' n

B is the vector of added element contributions to the nodes in the cylindrical axisymmetric 
case. In order to implement the Cartesian and axisymmetric cases together, the half time 

step values 
 1/2n

Q have to be calculated slightly differently, and the consistent mass matrix 

Dc and lumped matrix Dl need to be multiplied by 


er  in the cylindrical axisymmetric case, 
Finally, during the limiting procedure, the antidiffusive element contribution, the consistent 

and lumped matrices need to be multiplied by 


er for each element. 

4.3. Three-dimensional Cartesian coordinates 

The fluid transport equations take the general form in the three-dimensional Cartesian 
coordinates as: 
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The Taylor Galerkin scheme is used to develop the FE-FCT scheme, with the time 
discretization preceding the space discretization. The time stepping is performed in two 
steps, the advective predictor and the corrector step. 

4.3.1. Advective predictor step 

The advective predictor step is formulated using the Taylor series expansion for the 

unknown variable  

Q  at a first order approximation, thereby resulting in the half time 

values of the independent variable
 1/2n

Q : 
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where Ve is the volume of a tetrahedral element, bi, ci and di are the linearly interpolated 
piecewise shape functions. The velocities of the charged species at time (n+1/2) are assumed 
to be the average value of the nodal velocities at time n. 

4.3.2. Corrector step 

The corrector step utilizes the Taylor series expansion for the full time step to the second 
order approximation to get: 
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where Ae is the boundary surrounding element e. Writing the above equation in the general 
form results in: 
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Instead of using a consistent mass matrix, a lumped mass matrix is used for computational 
purposes, resulting in: 
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To calculate the low order scheme, mass diffusion is added of the form: 
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to get the low order scheme: 
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5. Fluid flow validation of the above FE-FCT formulation 

In order to validate the fluid flow equations and the methodology developed, the Euler 
equations which are the Navier-Stokes equations without diffusion and source terms were 
tested using the shock tube type problem, where different parameters, such as density, 
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diffusion coefficient and mesh size were considered. Furthermore, a shock wave incident on 
a wedge was also tested in the Cartesian case. Finally, energy source terms are introduced 
into the two-dimensional Cartesian and axisymmetric cylindrical geometries, which result 
in sound and shock wave generation, resembling the heating expected during the 
development of a spark and an arc plasma gas discharge. 

5.1. Riemann test case 

The Euler equations are validated in one-dimensional Cartesian coordinates using the shock 
tube or Riemann test case in air with the ratio of the specific heats, γ, equal to 5/3, where 
analytical results are available. Figure 2 shows a one-dimensional comparison between the 
analytical and numerical solution of density for three different meshes at times t = 0.1 and 
0.5 s. It is  shown that in the case of the finer mesh, the overshoot observed is reduced. 
Figure 3 shows the analytical and numerical solution for density for the finest mesh (Mesh 
3) at three different instants in time of t = 0.1, 0.3 and 0.5. A direct comparison shows clearly 
that the Euler solver developed is capable of simulating the propagation of shock waves and 
that the results are of adequate accuracy. This is also verified by calculating the maximum 
percentage error for the three different meshes as shown in Table 1 below.  
 

Mesh number Maximum density error 
1 1.6177 % 
2 1.0895 % 
3 0.2345 % 

Table 1. Maximum density error for three different meshes 

 
Figure 2. Comparison of analytical and numerical results using three different meshes at two different 
instants in time t = 0.1 and 0.5 s. □ line: Analytical solution, ◊ line: Mesh 1, 500 nodes, x line: Mesh 2, 
1000 nodes and + line: Mesh 3, 5000 nodes 
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Figure 3. Comparison of analytical and experimental results using the finer mesh at three different   
instants in time t = 0.1, 0.3 and 0.5 s. □ line: Analytical solution, + line: Mesh 3, 5000 nodes 

5.2. Heating source term test case 

The two-dimensional Cartesian Euler equations in air with γ equal to 1.4 are tested by 
introducing a heating source term of magnitude 1x1012 J/m2 for a duration of 3x10-8 s within 
a square block of size 0.002 m x 0.002 m, with the simulation being run for 5000 steps at a 
constant time step increments of 3x10-8 s. The contour plot of the momentum in the x 
direction is shown in Figure 4, where at the exterior of the wave front, the wave is moving 
outwards in the x direction with maximum momentum. At the interior of the wave front, 
there is a sudden decrease and a change in the direction of the momentum. This is due to the 
fact that the inertial effects of the sudden explosion cause an overexpansion of the wave, 
therefore a rarefraction wave is created moving inwardly. Figure 5 shows a contour plot of 
the energy at a time of 9x10-5 s. High energies occur at the shock front of the wave with low 
energies forming behind the shock front, again due to the overexpansion of the wave, which 
are in agreement with blast wave theory Baker (1973) [10]. 

5.3. Shock wave incident on a wedge test case 

A shock wave of Mach number 2 in air with γ equal to 1.4 is incident on a wedge angle of 
46o degrees. The neutral gas is at a temperature of 300 oK and a pressure of 30 kPa. The 
simulation is run for 13000 time steps of 1x10-7 s duration. The simulation is terminated 0.1 
m before the shock wave hits the boundary on the right. Figure 6 shows the Cartesian 
contour plots of the density at a time of 1.3x10-3 s with the results being compared with the 
benchmark test case of a shock wave impinging on a wedge Takayama (1997) [11]. The 
results are found to be in good agreement capturing the shock wave created at (0.9 m, 0.7 m) 
coordinates.  
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Figure 4. Contour plot of the x-momentum at time t = 9x10-5 s 

 

 
Figure 5. Contour plot of the energy at time t = 9x10-5s 
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Figure 6. Contour plot of the density at a time of 1.3x10-3 s 

5.4. Micro-blast waves test case 

The two-dimensional Euler solver is validated in the cylindrical axisymmetric case using 
numerical blast wave tests that involve the release of sudden burst of energy by focusing a 
laser beam within small volumes in air with γ equal to 1.4, leading to the development of 
shock waves. Jiang et al (1998) [12] has analyzed both experimentally and numerically the 
propagation of micro-blast waves in ambient air. The duration of the pulse was of the order 
of 18 ns and the total amount of energy released was measured to be 1.38 J. This sudden 
release of energy raises instantaneously the pressure, density and temperature to values 
many times higher than those of the ambient conditions, thereby creating highly 
compressive acoustic waves that will in turn generate strong shock waves. 

Figures 7 and 8 compare respectively one-dimensional plots of the density against time 
along the axis of symmetry obtained by Jiang and the authors for the same mesh and 
different diffusion coefficients and for different mesh and the same diffusion coefficient. 
Given the diversities of the two numerical schemes, the results show to be in good 
agreement. 
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Figure 7. Non-dimensionalized density (ρ*) in radial direction at t1 = 5.36 μs, t2 = 6.65 μs, t3 = 10.05 μs, t4 
= 12.58 μs. - line: Jiang, ◊ line : Mesh 2 : 27570 nodes, Diff. Coeff., 0.0012, x line: Mesh 2:, 27570 nodes, 
Diff. Coeff., 0.002 

 
Figure 8. Non-dimensionalized density (ρ*) in the radial direction at t1 = 5.36 μs, t2 = 6.65 μs, t3 = 10.05 
μs, t4 = 12.58 μs. - line: Jiang, ◊ line: Mesh 2, Diff. Coeff., 0.002, x line: Mesh 1, Diff.  Coeff., 0.002 

6. Adaptive mesh algorithm 

In order to reduce computational needs considerably, an adaptive mesh generator has been 
developed, rendering possible the analysis of heating effects both in short and long gaps. 



 
Electromagnetic and Fluid Analysis of Collisional Plasmas 53 

For an adaptive mesh generator, an error indicator is necessary to decide on the amount of 
refinement. The error indicator used by the author is the one used by Lohner [13], which in 
multidimensional form is calculated as 999999follows: 
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where Nik is the shape function of node i in element k, Njl is the shape function of node j in 
element l, Uj is the value of the variable chosen to be used as error indicator at node j, Ei is 
the error indicator value at node i, and  is a factor varying from 0 to 1. The value of  is 
added as noise filter, so that any loss of monotonicity such as wiggles or ripples are not 
refined. The above error indicator is dimensionless, fast to calculate, varies from 0 to 1 such 
that prefixed tolerances and many variables as error indicators can be used at the same time.  

In this case, an adaptive mesh algorithm in two-dimensional Cartesian, and two-
dimensional cylindrical axisymmetric coordinates has been developed by the author in 
order to analyze plasmas much faster and more accurately. This is achieved by constructing 
a computer resource efficient algorithm, which is automated in providing the necessary 
results. Generally, the numerical solution of time dependent differential equations is 
classified into the categories of static and dynamic. For static methods, any addition of 
nodes, and edge swap and topological movement of nodes is performed at a fixed time. In 
the dynamic case, or moving mesh methods, a mesh equation is introduced that involves 
node velocities such that a fixed number of nodes are moved in such a way that the nodes 
are always concentrated near regions of rapid variation of the solution. Thereby the 
simultaneous solution of the differential and mesh equations is necessary, having the 
advantage that no interpolation between existing and future meshes is necessary [14]. The 
author of this paper has adopted the static method, which is more widely used and tested in 
the literature.  

The algorithm incorporates an innovative element quality improvement procedure that has 
the ability to guarantee the generation of new meshes, as well as the treatment of existing 
bad element quality meshes, to nearly ideal standards, guaranteeing a minimum element 
quality of 0.85, and above 0.90 of average element quality in uniform and non-uniform 
geometric domains. Furthermore, another novelty of the paper is also the utilisation of an 
interpolation method between meshes which is very fast, making the adaptive meshing 
more attractive. The re-meshing times are decided optimally according to the maximum 
speeds of the fastest particle within the simulation to guarantee that the desired mesh 
resolution is in place at all times, whereas the numerical diffusion error due to the 
interpolation between meshes is minimized by interpolating between meshes of similar size.  

Figure 9 shows a flow chart of the implementation procedure of the adaptive mesh 
developed by the author. The first step is to create a reference coarse mesh that will be used 
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as a reference mesh for future refinement and coarsening of the meshes. The second step is 
to apply the initial conditions on the reference coarse mesh, and calculate the amount of 
refinement by multiplying the error by a constant factor in each element. The refinement 
factor is decided on a basis of experience, and trial and error. Then a newly adapted initial 
mesh is developed using a freely available two-dimensional software package which uses 
the divide and conquer method to refine elements [15]. Since the elements that are created 
from this package are of bad element equality, they are first treated using adaptive mesh 
techniques. Specifically, the h-refinement/coarsening technique is firstly used, which 
includes the edge swap and node additions/removals to improve the interconnectivity 
between adjacent nodes. Secondly, the r-refinement technique, which involves jiggling of 
the mesh, follows, i.e. the movement of nodes around the geometry in a controlled way, 
such that the overall element quality is improved.  

 
Figure 9. Flow chart of the implementation procedure of the adaptive mesh generator 

Once the adapted initial mesh is created that can be used for the solution of the differential 
equations, an interpolation of the results from the reference coarse mesh to the adapted 
initial mesh is performed. Having defined the mesh to be used and calculated the 
corresponding values that all the variables have at the nodes of this mesh, the simulation 
proceeds forward in time, until an indicator signifies that the solution has reached the outer 
boundary of the refined region, and a re-meshing operation needs to be performed. The 
indicator calculates the maximum distance that the fastest particle travels, and ensures that 
it does not exceed the geometric tolerance of the initial coarse mesh, thereby it is guaranteed 
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that the correct resolution is provided at all times. Then in order to decide on the 
appropriate mesh to run the simulations, the results are interpolated from the adapted 
initial mesh back to the reference coarse mesh, and then the error is calculated to create a 
final mesh. Then this mesh is treated as above, using edge swap and node 
additions/removals operations to improve the interconnectivity between adjacent nodes, 
and finally mesh jiggling operations to improve the overall element quality, creating the 
adapted final mesh. Then one needs not to interpolate from the reference coarse mesh to the 
created adapted final mesh, but instead from the created adapted initial mesh to the created 
adapted final mesh. This operation is performed due to the fact that interpolation is a source 
of numerical diffusion on the results, and by interpolating just once, instead of twice, makes 
the results during the interpolation processes more accurate. Then having decided on the 
adapted final mesh and having interpolated the results, then one runs the simulation 
forward in time and the procedure is repeated many times. This completes the 
implementation of the adaptive mesh algorithm. For the implementation of the above 
adaptive mesh algorithm, three tools are necessary, which are (a) the error calculation, (b) 
the element quality improvement algorithm, and (c) the algorithm for interpolation between 
meshes tools, and are thoroughly explained below. 

7. Application of electromagnetic and fluid code on microplasmas 

7.1. RF applicator at 40 MHz 

In this section, results are presented showing the avalanche and streamer propagation in a 
gap of 1 cm in an RF applicator at 40 MHz. Figures 10 and 11 refer to times t1 = 50, t2 = 55, t3 = 
62.5, t4 = 63.5 ns. Figure 10 shows the radial field along the symmetry axis from times t1 to t4. 
It is shown that during the time interval t1 to t2, its magnitude increases to a value of 
approximately 0.5 x 105 V/m due to the net charge that exists and that it stays fairly constant 
at the bottom electrode end, but gradually increases at the upper electrode end, with both 
radial fields always extending closer towards the electrodes as time progresses. It is 
interesting to note that the radial field is positive during this time at the upper end and 
negative towards the bottom end. This initiates the propagation of streamers towards the 
electrodes. At time t3, the radial field reverses at both ends, when compared with the time 
interval of t1 to t2, with the radial field magnitude being larger than before and this is due to 
the streamer impinging on the two electrodes. At time t4, the radial field increases even 
further at the bottom electrode side, but changes sign at the upper electrode side. This is 
because the streamer that hits the upper electrode forms earlier than the one that hits the 
lower electrode, as the discharge is overall exposed to a larger negative voltage cycle. The 
change of sign of the radial field at the upper electrode is due to the absorption of the 
electrons into the electrode and the start of the formation of a cathode fall region of net 
positive charge near it. Figure 11 shows the axial electric field along the symmetry axis from 
times t1 to t4. At time t1, at the middle of the gap, the axial electric field gets distorted from the 
Laplacian field which initiates the streamer propagation. During the time interval t1 to t2, the 
distortion increases in magnitude and spreads out further towards the two electrodes. At 
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time t3, there is a sudden decrease of the axial electric field at the two electrodes, leaving a 
nearly constant plateau in the middle of the gap due to the streamer impinging on the two 
electrodes. At a later stage of t4,, the ripple profile reverses shape and starts to increase again 
at an ever higher rate, which corresponds to the times when the streamers charge is 
accumulated on the two electrodes. 

 

 
Figure 10. One-dimensional plots of the radial field at times t1 to t4 along the symmetry axis 

 

 
Figure 11. One-dimensional plots of the axial field at times t1 to t4 along the symmetry axis 
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7.2. Heating effects of normal and abnormal glow discharge 

The development of a glow discharge in atmospheric pressure air and its associated Joule 
heating are analyzed by solving the Poisson, charged particle continuity and Navier-Stokes 
equations using the FE-FCT method in two-dimensional cylindrical axisymmetric 
coordinates. An applied direct current voltage of 20% above the breakdown voltage is 
applied at the anode in a 1 mm air gap between two parallel plate electrodes and a normal 
glow discharge is shown to consist of the cathode fall, negative glow, positive column and 
anode regions. Neutral gas heating occurs with the initiation of the glow discharge, with the 
temperature at the anode shown to increase by only a few degrees oK as shown in Figure 12 
due to the low electron densities and axial fields at the adjacency of the anode, whereas at 
the proximity of the cathode the temperature increases by approximately 180 oK as shown in 
Figure 13, with the temperature maximum at the cathode fall region, reducing abruptly at 
almost ambient temperature just outside it, where it remains almost constant.  

The numerical results for the development of a glow discharge and its associated Joule 
heating by modeling its transition from a single electron, in a uniform applied electric field 
in atmospheric air, to a fully fledged state which consists of the cathode fall, negative glow, 
positive column and anode regions are presented. It is shown that the positive column 
travels towards the anode in the form of a return wave and maximum heating by 
approximately 180 oK occurs at the cathode fall region during the glow discharge 
development. 

 
 

 
 
Figure 12. One-dimensional plots of the temperature along the symmetry axis close to the cathode at t = 
6.75 ns at V= 5600 V 
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Figure 13. One-dimensional plots of the temperature along the anode at four instances in time at V = 
5600 V 

7.3. Secondary streamers 

A constant voltage of 130 kV is applied on a dielectric barrier discharge configuration with 
the two metallic electrodes placed 4 mm apart, and with each one covered by alumina 
dielectric of 1 mm thickness, leaving an air gap of 2 mm for the discharge to develop. The 
two-dimensional neutral gas temperature distribution at time t = 0.3263 μs is shown in 
Figure 14, with most of the heating within the microplasma occurring along the symmetry 
axis where most of the activity takes place [8]. The column of heated air extends to a radial 
distance of 0.2 mm, and the temperature is raised approximately 120 oK. It is also observed 
that striations occur between the anode and the cathode. Along the dielectric electrodes, the 
temperature is larger than in the inter-electrode gap, but smaller than that at the symmetry 
axis. On average, higher neutral gas temperatures are observed at the cathode due to the 
arrival of the primary and secondary streamer charges on the dielectric cathode [16]. The 
two-dimensional axial electric field distribution at time t = 11.8 ns is shown below in Figure 
15. Along the symmetry axis, there exists a cathode fall, negative glow, positive column and 
anode regions, similar to those of a normal glow discharge. A secondary streamer is shown 
to form at a radial distance of 1.5 mm that travels from the anode towards the cathode, 
extending radially up to the outer boundaries of the discharge and at later stages, when it 
hits the cathode, the sheath region spreads throughout the cathode dielectric surface.  

7.4. Adaptive mesh results on DC avalanche and streamers in ambient air 

The adaptive mesh generator has been tested in a geometric configuration that comprises of 
two metallic parallel-plates that are placed 1 mm apart in ambient atmospheric air. With a 
single electron released at the cathode as initial condition, the development of the avalanche 
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and the primary streamer are analyzed as shown in Figures 16a-f, which show the mesh 
plots and the corresponding electron densities along the symmetry axis at three different 
instances in time. Figures 16a and 16b show respectively the initial mesh refinement and 
electron density distribution along the symmetry axis, whereas Figures 16c and 16d show 
the mesh and electron density during cathode directed primary streamer propagation, and 
Figures 16e and 16f show the mesh and electron density distributions just before the 
streamer hits the cathode. In the simulations, the photoemission effect is included in the 
calculation using the model developed by the authors [17], whereas photoionization and 
impact ionization phenomena are excluded. It has been shown that the avalanche and 
streamer propagation are captured by the adaptive mesh generator in an optimum way. 

 
Figure 14. Plot of the two-dimensional cylindrical axisymmetric neutral gas temperature at time  
t = 0.3263 μs 

 
Figure 15. Plot of the two-dimensional axial electric field distribution at a time t = 11.8 ns 
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Figure 16. (a) Two-dimensional cylindrical mesh at time t = 0 s at a voltage of 5600 V, (b) One-
dimensional electron distribution along the symmetry axis at time t = 0 s at a voltage of 5600 V, (c) Two-
dimensional cylindrical mesh at time t = 3.59 ns at a voltage of 5600 V, (d) One-dimensional electron 
distribution along the symmetry axis at time t = 3.59 ns at a voltage of 5600 V, (e) Two-dimensional 
cylindrical mesh at time t = 4.54 ns at a voltage of 5600 V, (f) One-dimensional electron distribution 
along the symmetry axis at time t = 4.54 ns at a voltage of 5600 V 

(a) (b)

(c) (d)

(e) (f)
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8. Conclusions 

The electromagnetic and fluid analysis of collisional plasmas has been thoroughly discussed 
including the necessary differential conservation equations to characterize such plasmas. 
The finite-element formulations were presented for the solution of these equations and the 
implementation procedure to couple the above set of equations was discussed. Thereafter, 
the FE-FCT algorithm was validated against theoretical and experimental fluid flow results 
and it was then used in a variety of collisional plasma configurations to study different 
plasma phenomena.  
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1. Introduction 

A smart structure typically comprises of one or more active (or functional) materials. These 
active materials act in a unique way in which couple at least two of the following elds to 
provide the required functionality: mechanical, electrical, magnetic, thermal, chemical and 
optical. Through this coupling, these materials have the ability to change their shape, 
respond to external stimuli and vary their physical, geometrical and rheological properties. 
In modern technologies there has been an intense interest in FGPMs which are used in smart 
structures. It is well known that piezoelectric materials produce an electric field when 
deformed, and undergo deformation when subjected to an electric field. The coupling 
nature of piezoelectric materials has conducted wide applications in electro-mechanical and 
electric devices, such as electro-mechanical actuators, sensors and transducers. For example, 
piezoelectric actuators can be used to modify the shape of an airfoil, thereby reducing 
transverse vortices [1], or to maintain proper tension with overhead electrical wires on a 
locomotive pantograph [2]. 

For homogeneous piezoelectric media, problems of radially-polarized piezoelectric bodies 
were considered and solved analytically by Chen [3]. Sinha [4] obtained the solution of the 
problem of static radial deformation of a piezoelectric spherical shell and under a given 
voltage difference between these surfaces, coupled with a radial distribution of temperature 
from the inner to the outer surface. Ghorbanpour et al. [5] investigated the stress and electric 
potential fields in piezoelectric hollow spheres. Stress in piezoelectric hollow sphere under 
thermal environment was developed by Saadatfar and Rastgoo [6]. Dai and Wang [7] 
presented the thermo-electro-elastic transient responses in piezoelectric hollow structures. 
Dai and Fu [8] studied the electromagneto transient stress and perturbation of magnetic 
field vector in transversely isotropic piezoelectric solid spheres.    
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In-homogenity was considered in a number of studies. Elastic analysis of internally 
pressurized thick-walled spherical pressure vessels of functionally graded materials (FGMs) 
investigated by You et al. [9]. Analytical solution for a non-homogeneous isotropic 
piezoelectric hollow sphere was presented by Ding et al. [10]. Effect of material in-
homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric 
rotating cylinder was considered by Ghorbanpour et al. [11]. Wang and Xu [12] studied the 
effect of material inhomogeneity on electromechanical behaviors of functionally graded 
piezoelectric spherical structures. Magnetothermoelastic problems of FGM spheres are 
studied by Ghorbanpour et al. [13].  

Sladek et al. [14] derived Local integral equations for numerical solution of 3-D problems in 
linear elasticity of FGMs viewed as 2-D axisymmetric problems while the meshless local 
Petrov-Galerkin method was applied to transient dynamic problems in 3D axisymmetric 
piezoelectric solids with continuously non-homogeneous material properties subjected to 
mechanical and thermal loads by Sladek et al.[15]. They concluded that this method is 
promising for numerical analysis of multi-eld problems like piezoelectric or thermoelastic 
problems, which cannot be solved efficiently by the conventional boundary element method. 

Motivated by these ideas, new applications of piezoelectric sensors and actuators are being 
introduced and expanded for a number of geometric configurations. In this chapter, a 
hollow sphere composed of a radially polarized transversely isotropic piezoelectric material, 
e.g., PZT-4, which is subjected to mechanical and thermal loads, together with a potential 
difference induced by electrodes attached to the inner and outer surfaces of the annular 
sphere is considered. All mechanical, thermal and piezoelectric properties of the FGPM 
hollow sphere, except for the Poisson’s ratio, are assumed to depend on the radius r  and 
expressed in terms of its power functions. Hence, the equation of equilibrium in the radially 
polarized form is reduced to a system of second–order ordinary differential equation and is 
solved analytically for four different sets of boundary conditions. Finally, the thermal 
stresses, electric potential and displacement distributions are shown for different material 
in-homogeneity Also, a three-dimensional finite element analysis of asymmetric closed and 
open spheres with different boundary conditions subjected to an internal pressure and a 
uniform temperature field has also been carried out using ANSYS software. 

2. Electromechanical coupling 

The subsequent characterization of electromechanical coupling covers the various classes of 
piezoelectric materials. Details with respect to definition and determination of the constants 
describing these materials have been standardized by the Institute of Electrical and 
Electronics Engineers [16]. Stresses σ  and strains ε  on the mechanical side, as well as flux 
density D  and field strength E  on the electrostatic side, may be arbitrarily combined as 
follows [17,18] 
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where EC ,  , e  and Te  are the fourth-order elasticity tensor, the dielectric permittivity 
tensor, third order tensor of piezoelectric coefficient and transpose of it, respectively.  

Assuming total strain tensor to be the sum of mechanical ( M ) and thermal ( T ) strains [19, 20] 
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It is also noted that the electric field tensor E  can be written in terms of electric potential    
as [21] 

 E .grad    (5) 

3. Formulation for electrothermoelastic FGPM spheres 

A hollow FGPM sphere with an inner radius ir  and outer radius or  is considered. The sphere 
is subjected to an internal and external pressures iP  and oP , an electric potential  and a 

distributed temperature field  T r  (Fig. 1). It is assumed that, only the radial displacement 

rU  is nonzero and electric potential is the functions of radial coordinate r , Thus        

    , 0, .rU u r U U r        (6) 
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Figure 1. Hollow FGPM sphere subject to uniform temperature field, uniform internal pressure, 
uniform external pressure and applied voltage V. 

The equilibrium equation of the FGPM sphere in the absence of body force and the 
Maxwell's equation for free electric charge density are [18, 22] 

 ,
2( )

0,rr
rr r r

 
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
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2 0,rr r rrD D
r
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where  ,ii i r   is the stress tensor and rrD is the radial electric displacement. 

Also, the radial and circumferential strain and the relation between electric field and electric 
potential are reduced to  

 , ,rr ru     (9)   

   ,u
r     (10)   

   , .rr rE    (11) 

The constitutive relations of spherically radially polarized piezoelectric media and the 
component of radial electric displacement vector also can be written as [23, 24]  
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 (12) 

For transversely isotropic properties, when the concerned axis of rotation is oriented in the 
radial direction, the elasticity and piezoelectric coefficient tensors are summarized to [25] 

 12 13 21 22 33 32 23 12 13, , , .C C C C C C C e e       (13) 

It is appropriate to introduce the following dimensionless quantities as 
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Using the above dimensionless variables, Eqs. (7) and (8) can be expressed as 
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,
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
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 





   (15) 

 
,

2
0.r

r
D

D  
   (16) 

Before substituting the component of the electric field in Maxwell’s equation, appropriate 
power functions for all properties are assumed as [26] 

  0 ,r


    (17) 

in which r represents the general properties of the sphere such as the elastic, piezoelectric,  
dielectric coefficients and thermal conductivity, and 0  corresponds to the value of the 
coefficients at the outer surface. Substituting Eqs. (14) and (17) into Eq. (12), yields 
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                                          

 (18) 

4. Electrothermoelastic analysis of FGPM spheres 

The solution of Eq. (16) is 
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 1
2 ,r

A
D


  (19) 

where 1A is a constant. Substituting Eq. (19) into Eq. (18), we obtain 
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                                                      
        

(20) 

In this study a distributed temperature field due to steady-state heat conduction has been 
considered. Using Eq. (17) for the thermal conductivity property, the heat conduction 
equation without any heat source is written in spherical coordinate as [22, 27] 

  2
0 ,2 ,

1 ( ) 0,K T
 

 


   (21) 
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aat T T
at T hT
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   
 

  
  (22) 

where h  is the ratio of the convective heat-transfer coefficient and 0K  is the nominal heat 
conductivity coefficient. Integrating Eq. (21) twice yields 

 11
2( ) ,

1
B

T B 


   


 (23) 

Constants 1B and 2B are obtained using thermal boundary conditions which shown in Eq. (22). 

Finally, substituting Eq. (20) and (24) into Eq. (15) yields the following non-homogeneous 
Cauchy differential equation 

    2
1 12

1 2 4 1 5 2 3 12
U UD D U D B D B D A    


   

    


 (24) 

where  1,...8iD i  are defined in Appendix A. 

The exact solution for Eq. (24) is written as follows 
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The particular solution of the differential Eq. (24) may be obtained as 

 1 2
1 2 ,q q

pu u u    (27) 

where 
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     (28) 

in which  R   is the expression on the right hand side of Eq. (24) and  W   is defined as 
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u u
    (29) 

Combining  Eqs. (25)-(29) one can obtain the particular solution as 
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 (30) 

The complete solution for mU  in terms of the non-dimensional radial coordinate is written as  

 ,g pU u u   (31) 

where 1K , 2K and 1A  are unknown constants. Substituting the displacement from Eq. (31) 
into Eq. (20) the radial and circumferential stresses are obtained as 
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  (33) 

Substituting U  from above into the last term of Eq. (18), ( , ) and combining with Eq. (19) 
and performing the integrating, electric potential is obtained as 

 

 

 

1 22 2
1 1 1 2

1 2

1 1
1 1 2 3

1
2 1

3
1 2 4 2 1

1
2 1

3
1 1 2 5

2 2
( )

2
( 1)( 1)(1 ) (1 )

2( ) (2 )ln( )3
( 3)( 3) 1

3 2

q q

r

E E
E K E K

q q

E E E D
A

q q

E E D E E
B

q q

E E E D

 





  

  
   

   


 

  



      
                      
  
  
       
        
 

 


1
2 1

2 2
2 1

(2 )
,

( 1)( 1)(3 ) 1
rE E

B A
q q


  

   

   
       

 (34) 

where r ,   and    are radial stress, hoop stress and electric potential,  respectively. Two 
sets of mechanical and electrical loading boundary conditions are considered in this 
investigation which in normalized form are written as  

 case 1 : (1) 1, ( ) 0, (1) 0, ( ) 0r r           (35) 

 case 2 : (1) 0, ( ) 0, (1) 1, ( ) 0r r           (36) 

In case 1, the FGPM hollow sphere is subjected to an internal uniform pressure without any 
imposed electric potential and external pressure. However in this case the induced electric 
potential existed across the thickness. In this case, the sphere acts as an sensor. In the second 
case, an electrical potential difference is applied between the inner and outer surfaces of the 
sphere without any internal and external pressures. In this case, the sphere acts as an 
actuator.  

For the above mentioned cases 1, and 2 the system of linear algebraic equations for the 
constants 1K , 2K , 1A  and 2A  of the Eqs. (32), (33) and (34) can be written in the following 
from  
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  (37) 

where the ijm  and ib  ( , 1,...4)i j   are defined in Appendix B 

5. Numerical results and discussion 

5.1. Analytical solution 

The numerical results are showing the variation of stresses, electric potential and 
displacement across the thickness of the FGPM sphere for different material inhomogenity 
parameter  . Presented results are for the two cases of different boundary conditions with 
aspect ratio 1.3  . The plots in these figures correspond to 323iT K  and 298oT K . The 
piezoelectric material PZT-4 has been selected because of its technical applications. 
Mechanical and electrical properties of piezoelectric material, PZT-4 are tabulated in Table 
1[28].  
 

Property 11C  12C  22C  23C  11e  12e  11e   0r    
PZT-4 115      

Gpa  
74.3     
Gpa  

139      
Gpa  

77.8     
Gpa  

15.1        
2/C m  

-5.2        
2/C m

3.87e-9   
/F m  

2 e - 5   
1 / K  

2 e -6    
1 / K  

7500       
3/kg m  

Table 1. Mechanical, electrical and thermal properties for PZT-4  

5.1.1. Case 1 

Results of the first case are illustrated in Figs.  2 to 5. Radial stresses for different material in-
homogeneity parameters  are shown in Fig. 2. Radial stresses satisfy the mechanical 
boundary conditions at the inner and outer surfaces of the FGPM sphere. The maximum 
absolute values of radial stresses belong to a material identified by in-homogeneity 
parameter 1.5   the minimum absolute values of which belong to 1.5   . In this case 
there is no imposed electric potential however, the induced electric potentials for different 
material in-homogeneity parameters   are shown in Fig. 3. Electric potentials satisfy the 
electrical boundary conditions at the inner and outer surfaces of the FGPM sphere. It is also 
obvious that higher induced electric potentials belong to higher absolute values of 
compressive radial stresses. In this case circumferential stresses shown in Fig. 4 are highly 
tensile throughout thickness and except for the material 1.5   their maximum values 
located at the inner and their minimum values located at the outer surfaces of the sphere. 
Displacements are illustrated in Fig. 5 for all material properties. Displacements are positive 
throughout the thickness and they smoothly decrease from their maximum value at the 
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inner surface to their minimum value at the outer surface of the FGPM sphere. Maximum 
values of displacements belong to 1.5    and minimum values belong to 1.5    

 
Figure 2. Case 1: Distributions of the radial stress for different values of .  

 
Figure 3. Case 1: Distributions of the circumferential stress for different values of .   
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Figure 4. Case 1: Distributions of the electric potential for different values of .   

 

 
Figure 5. Case 1: Distributions of the radial displacement for different values of .   
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5.1.2. Case 2 

Results of this case are illustrated in Figs. 6 to 9. In this case the imposed electric potential 
satisfies the electrical boundary conditions at the inner and outer surfaces of the sphere. The 
maximum electric potentials belong to 1.5    the minimum values of which belong to

1.5  . In this case there is no applied pressure at the inner and outer surfaces of the sphere 
however the induced compressive radial stresses satisfy the free mechanical boundary 
conditions. The maximum absolute values of the induced compressive radial stresses belong to 
the same maximum value of electric potential. Circumferential induced stresses are 
compressive throughout thickness for different material in-homogeneity parameters  . 
However, for negative parameters   the minimum values of circumferential stresses located 
at the inner surface while for positive parameters   their minimum values located at the outer 
surface of the FGPM sphere.  The induced displacement is negative across the thickness for all 
material parameters. Their minimum values located at the inner and their maximum values 
located at the outer surfaces of the FGPM sphere. It is interesting to compare the induced 
radial and circumferential stresses in this case with the residual stresses locked in the sphere 
during the autofrettage process of spheres made of uniform material. One might conclude that 
by easily imposing an electric potential there is no need to autofrettage these vessels. 

 
Figure 6. Case 2: Distributions of the radial stress for different values of .  
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The results of this investigation are validated with the recently published paper by Wang 
and Xu [12] which is shown in Figs. 10 and 11. There are a very good agreement among the 
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results and the only small differences are due to thermal stresses which are not considered 
by Wang and Xu .  

 
Figure 7. Case 2: Distributions of the circumferential stress for different values of .  

 
Figure 8. Case 2: Distributions of the electric potential for different values of .   
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Figure 9. Case 2: Distributions of the radial displacement for different values of .   

 

 
Figure 10. Case 2: Comparison of the radial stress distributions with Ref. [12] for homogeneous 
piezoelectric hollow sphere. 
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Figure 11. Case 2: Comparison of the electric potential distributions with Ref. [12] for homogeneous 
piezoelectric hollow sphere. 

5.3. Finite element solution  

In order to develop the one-dimensional solution to a three-dimensional approach finite 
element analysis of a sphere subjected to an internal pressure and a uniform temperature 
field has been carried out using ANSYS finite element software. A three-dimensional 
element identified by solid 191 is selected because it is an appropriate element for the FGPM 
structures. Sphere has been divide into eight layers by a controlled mesh system along 
radius and the  mechanical, electrical and thermal properties are functionally defined 
according to power law Eq. (17) for 1.5  . A controlled mesh in which very fine elements 
are located at the supports where stress concentration existed is employed in this method.  
However farther from the supports a coarser mesh is dominated. In this work, two cases for 
sphere are considered as follows: 

5.3.1. Three- dimensional sphere  

In this case, consider a sphere with two asymmetric simply supported boundary conditions 
on the outer surface of the sphere as shown in Fig. 12. For this boundary condition 
dimensionless effective stresses versus normalized radius at two cross sections (i.e.  A-A and 
B-B) are depicted in Fig. 13.  Section A-A is selected to pass through supported point on the 
outer surface of the sphere and section B-B is an arbitrary section as shown in Fig. 12. It can 
be seen from this figure that the maximum effective stress for the above mentioned sections 
occur at the inner surface of the sphere and the effective stresses are decreasing with 
increasing radius for 1.3  . Total dimensionless displacement versus dimensionless radius 
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for 1.3   at two cross sections of A-A and B-B are demonstrated in Fig. 14. As can be seen 
from this figure the maximum displacement occur at the inner surface of the sphere and 
displacement value is decreasing with increasing dimensionless radius so that for section A-
A, the zero value of displacement at the outer surface  satisfies the boundary condition at 
this point.   

 
Figure 12. A schematic of asymmetric thick-walled sphere with simply-simply supported. 

 
Figure 13. Effective stress distribution along the radius of asymmetric closed sphere. 
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Figure 14. Total displacement distribution along the radius of asymmetric closed sphere. 

5.3.2. Three- dimensional open sphere  

The geometry and loading condition as well as its boundary conditions are shown in Fig. 15. 
Three different boundary conditions are considered in this case. These boundary conditions 
are clamped-clamped, clamped-simply and simply-simply supported respectively.   

The solution obtained by the software clearly indicates the most critical region of the sphere. 
In the most critical region normalized effective stress distribution and the total 
displacements are plotted in Figs. 16 and 17 along normalized radius at all node points for 
the above mentioned three boundary conditions. Fig 16 shows that in general the effective 
stresses are decreasing along radius to an absolute minimum and then increasing to their 
maximum values located at the outer surface of the vessel. For simply-simply supported 
boundary condition this absolute minimum is located near the outer surface of the vessel, 
however for the clamped-clamped condition it is nearly at the middle surface of the vessel. 
For the clamped-simply supported condition this minimum is somewhere between the 
previous two cases. 

It has been found that the magnitude of effective stresses at all node points are higher for the 
clamped-clamped condition and are lower for the simply-simply supported condition. It can 
be observed from Fig. 17 that the maximum displacements for the three boundary 
conditions are located at the inner surface and they are decreasing to zero value at the outer 
surface of the sphere. It is also found that the displacement curve for simply-simply support 
condition is higher than other boundary conditions. 
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Figure 15. The three-dimensional nite element model for open sphere subjected to internal pressure 
with clamped-clamped boundary conditions. 

 

 
Figure 16. Effective stresses distribution along the radius of the open sphere with different boundary 
conditions. 
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Figure 17. Total displacement distribution along the radius of the open sphere with different boundary 
conditions. 

6. Conclusions  

In this research, the electro-thermo-mechanical behavior of radially polarized FGPM hollow 
sphere was investigated. An analytic solution technique was developed for the electro-
thermo-mechanical problem, where stresses were produced under combined 
thermomechanical and electrical loading conditions. Variation of normalized stresses, 
electric potential and displacement of four sets of boundary conditions for different material 
in-homogeneity parameters   were plotted against dimensionless radius. In general, radial 
stresses and electric potentials satisfy the mechanical and electrical boundary conditions at 
the inner and outer surfaces of the FGPM sphere. It was concluded that higher absolute 
values of compressive radial stresses are associated with the higher induced electric 
potentials throughout the thickness in all cases. It was found that the induced radial and 
circumferential stresses of an imposed electric potential is similar to the residual stresses 
locked in the sphere during the autofrettage process of these vessels. Therefore, one might 
concluded that by easily imposing an electric potential there is no need to autofrettage these 
vessels. It was interesting to see that the compressive circumferential stresses due to an 
external pressure were very similar to the induced circumferential stresses resulted from 
imposing an electric potential. Moreover a three-dimensional finite element analysis of an 
asymmetric sphere subjected to an internal pressure and a uniform temperature field has 
been carried out using ANSYS software. In this study closed and opened spheres with 
different boundary conditions were considered. The finite element analysis indicated that 
the values of effective stress and total displacement at all node points along the thickness of 

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.5

1

1.5

2

2.5

3

Dimensionless radius

D
im

en
sio

nl
es

s t
ot

al
 d

isp
la

ce
m

en
t

 

 
Clamped-Clamped
Clamped-Simply
Simply-Simply



 
Finite Element Analysis – Applications in Mechanical Engineering 84 

the open sphere were the highest and lowest for the clamped-clamped condition, 
respectively.  
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1. Introduction 

Stiffened plates are basic structural members in marine structures as shown in Figure 1, and 
include also aeronautic and space shuttles among other structures. Due to the simplicity in 
their fabrication and high strength-to-weight ratio, stiffened plates are also widely used for 
construction of land based structures such as box girder and plate girder bridges. The 
stiffened plate has a number of one-sided stiffeners in either one or both directions, the latter 
configuration being also called a grillage (Figure 2). Ultimate limit state design of Stiffened 
plates’ structures requires accurate knowledge about their behaviour when subjected to 
extreme loading conditions.  

One of the most important loads applied on stiffened plates is the longitudinal in plane axial 
compression arising for instance from longitudinal bending of the ship hull girder as 
presented in Figure 3. The need to improve our knowledge of the buckling modes of such 
plates was emphasised after the collapse of several offshore structures and some ships in 
Brazil as well as the failure of several box girder bridges in the seventies of the twentieth 
century, Merrison Committee [1], Crisfield [2], Murray [3], Frieze, et.al. [4]. Stiffened plates 
are efficient structures, as a large increment of the strength is created by a small addition of 
weight in the form of stiffeners. However the collapse mechanisms of stiffened plates under 
predominantly compressive load present a complex engineering problem due to the large 
number of possible combinations of plate and stiffener geometry, materials, boundary 
conditions and loading. The design of such structure has to meet several requirements such 
as minimization of the weight and maximization of the buckling load. Thus, the designer of 
this structure is confronted with the problem of satisfying two conflicting objectives; such 
problems are called multi-objective or vector optimisation problems. In general, the 
objective-functions do not attain their optimum in a common point of the feasible points, 
Brosowski & Ghavami [5, 6]. 
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Figure 1. Some examples of thin-walled structures 

 
Figure 2. Structure of stiffened plates of the grillage type 

 
Figure 3. In-plane loading of stiffened plates when longitudinal bending of ship hull girder 
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For the analysis of such structural elements, the theory of orthotropic plate can be used to 
predict the global buckling stresses but not the local buckling and the interaction between 
the plate and the stiffeners, for the predominantly in-plane loading. In stiffened plates the 
initial imperfections due to the fabrication are inevitable. The buckling mechanism of 
stiffened plates depends, strongly, on the direction of initial bows, i.e. whether they are 
towards the plate or the stiffener. In the former case, the collapse is sudden due to buckling 
of the stiffener in contrast to the latter case, where a gradual failure occurs. Despite a 
substantial amount of theoretical research into the ultimate load behaviour of stiffened 
plates subjected to predominately in-plane loading, the accuracy and reliability of the 
predicted collapse load considering all the variables is not yet well confirmed. Specifically, 
in the available literature, no systematic theoretical and experimental investigation of the 
geometrical shape of the stiffeners cross-section on the ultimate buckling load behaviour of 
the stiffened plates, the interaction between the stiffeners and the plate, which was is the 
objectives of this chapter is being presented. 

The buckling behaviour of stiffened plates under different loading conditions which has 
been the topic of the authors investigation, both experimentally and numerically, during last 
three decades has been reviewed concisely in this chapter. Chen et al. [7] carried out 
experimental investigations on 12 stiffened plates under in-plane longitudinal compression, 
purely or in combination with lateral load. The specimens were in different damage 
conditions: seven “as-built”, two “dented” and three “corroded”. Hu and Jiang [8] 
simulated some of the tests made by Chen et. al. [7], using the commercial program 
ADINA [9] and in-house program VAST [10], both based on the FEM. The former was 
used to analyse the “as-built” and “dented” stiffened plates, whereas the “corroded” 
specimens were analysed using VAST [4]. It was found, that in most cases the FEM 
produced similar responses to those of experimental results up to the loss of structural 
continuity. Grondin et al. [11] made a parametric study on the buckling behaviour of 
stiffened plates using the FEM-based commercial program ABAQUS [12]. Sheikh et. al. 
[13] extended the studies in [11] to investigate the combined effect of in-plane 
compression and bending using the same program. In these studies, only tee-shape 
stiffeners, plate aspect ratios, plate-to-stiffener cross-sectional area ratio with different 
initial imperfections of the plates were investigated.  

All the cited studies, either experimentally or numerically, investigated the strength 
behaviour of longitudinally stiffened plates with specific boundary conditions. The 
continuity of both plates and stiffeners in thin-walled structures, composed of stiffened 
plates, leads to an interaction among the adjacent panels. Among the several available 
experimental investigations, two series of well executed experimental data on longitudinally 
multi-stiffened steel plates, with and without transversal stiffeners subjected to uniform 
axial in-plane load carried out to study the buckling and post-buckling up to final failure 
have been chosen. The first series are those of Ghavami [14] where the influences of stiffener 
cross-section of the type rectangular (R), L and T, as shown in Figure 4, have been 
investigated. The spacing of the stiffeners and the presence of rigid transversal stiffeners on 
the buckling behaviour up to collapse have also been studied. The second series of Tanaka & 
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Endo [15], where the behaviour of stiffened plates have three and two flat bars for 
longitudinal and transversal stiffeners respectively, were analysed. Besides, owing to the 
recent progress in the field of finite element method and available powerful FEM programs, 
it has been possible to assess the structural behaviour of the considered plates and stiffeners 
subjected to any combination of loads. 

 
Figure 4. Ghavami’s test models 

Therefore one of the principal aims of this chapter is to present the applicability of the finite 
element method to simulate test results. The Finite Element Method (FEM) technique is 
employed to trace a full-range of elastic-plastic behaviour of the stiffened plates. It is seen 
that the FEM-based software is capable and accurate enough to simulate the test results. 
With the availability of high memory and high speed PCs’, FEM programs become fast and 
cheap means to predict the buckling and post-buckling behaviour of stiffened plates with 
different configurations up to collapse. Successful simulations using FEM-based software 
means, that plate with different dimensions under various types of loading combinations 
and damages can be studied numerically. Besides, validated simulations using such 
programs enhance estimation of the ultimate strength analysis of box-like thin-walled 
structures composed of plates and stiffened plates. 

2. Ghavami’s experiments 

Ghavami [14] tested a total number of 17 plate models of overall dimensions B=L=750 mm in 
a specially designed testing rig as shown in Figure 5. The models were divided into six 
series, with their definition and dimensions summarised in Tables 1 and 2. The average 
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thickness of the plate was t=4.4mm for the longitudinally stiffened plates with one and two 
rectangular (R), L and T stiffeners, designated as P1R, P1L, P1T and P2R, P2L, P2T 
respectively. The thickness of the plates, stiffened longitudinally, as for the series II and III 
but with one or two transversal stiffeners of T sections, P1R1T, P1L1T, P1T1T, P2R1T, 
P2L1T, P2T1T and P2R2T, P2L2T, P2T2T respectively was equal to 4.8mm. The span 
between the simple supports for all models was 650mm in both directions. In each group 
one isotropic plate, P1, P2 was also tested as a reference model. However the supports for 
the longitudinally stiffened plates, series II and III were not continuously simply supported 
but were very closely discretized simply supported and those with transversal stiffeners had 
continuously simply supported boundary conditions. A summary of material properties 
and test results is given in Table 3. 

 
Figure 5. Ghavami’s testing rig 

 

Series 
No. 

Definition Test models 

I Unstiffened plate P1, P2 

II 
Plate with one longitudinal stiffener of R, L and T cross-

section 
P1R, P1L, P1T 

III 
Plate with two longitudinal stiffeners of R, L and T cross-

section 
P2R, P2L, P2T 

IV 
Plate as series II but with addition of one transversal 

stiffener at the mid-span 
P1R1T, P1L1T, 

P1T1T 

V 
Plate as series III but with addition of one transversal 

stiffener at the mid-span 
P2R1T, P2L1T, 

P2T1T 

VI 
Plate as series II but with addition of two transversal 

stiffeners at 1/3 of span 
P2R2T, P2L2T, 

P2T2T 

Table 1. Definition of Ghavami test models 
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Test 
model 

Plate Longitudinal stiffener Transverse stiffener 

L  b  t  wt  wh  ft  fb  wtt  wth  ftt  ftb  

mm  mm mm mm mm mm mm mm mm mm  mm  
P1 650 650 4.4 ---- ---- ---- ---- ---- ---- ---- ---- 

P1R 650 325 4.4 7.0 30.0 ---- ---- ---- ---- ---- ---- 
P1L 650 325 4.4 6.4 30.0 3.9 16.4 ---- ---- ---- ---- 
P1T 650 325 4.4 6.4 30.0 4.8 26.4 ---- ---- ---- ---- 
P2R 650 217 4.4 7.0 30.0 ---- ---- ---- ---- ---- ---- 
P2L 650 216 4.4 6.4 30.0 19.5 16.4 ---- ---- ---- ---- 
P2T 650 217 4.4 6.4 30.0 20.0 26.4 ---- ---- ---- ---- 
P2 650 650 4.8 ---- ---- ---- ---- ---- ---- ---- ---- 

P1R1T 325 325 4.8 5.1 30.0 ---- ---- 4.7 41.1 4.1 35.3 
P1L1T 325 325 4.8 5.2 30.2 3.4 14.8 4.8 40.4 4.1 34.2 
P1T1T 325 325 4.8 4.6 30.0 3.8 25.3 4.9 40.4 4.2 35.2 
P2R1T 325 216 4.8 5.1 30.0 ---- ---- 4.7 40.7 3.8 35.7 
P2L1T 325 217 4.8 5.1 30.2 17.2 14.6 4.6 40.6 4.1 35.9 
P2T1T 325 217 4.8 4.7 28.8 13.5 25.0 4.7 39.6 4.1 34.8 
P2R2T 216 216 4.8 5.0 30.1 ---- ---- 4.7 40.4 4.1 35.7 
P2L2T 217 217 4.8 5.1 30.0 17.0 14.9 4.7 40.6 4.1 35.5 
P2T2T 216 216 4.8 4.6 29.8 13.0 24.8 4.8 40.6 4.1 35.5 

Table 2. Dimensions of plate and stiffeners in Ghavami test models 

The testing rig was constructed within the Structural and Material Laboratory of PUC-Rio 
and is shown in Figs. 5 and 6. Out of plane deflections of plates and stiffeners were 
measured principally by mechanical dial gauges fixed at specific points mounted on the 
testing rig, as shown in Figure 6. In all models electrical linear strain gauges or rosettes 
measured the strains. More details on the test rig, test models and the process of the tests 
can be found in reference [14]. In each test the maximum ultimate collapse stress ult was 
calculated by dividing the ultimate load Pu to the overall cross-section of the plate Ap and 
stiffeners As as given by eqn (1):   

    ult u p s P / A A  (1) 

The squash load P  was calculated by multiplying the yield stress of the plate Yp and the sq

stiffener Ys with their appropriate cross-section areas as eqn (2): 

   sq Yp p Ys sP  A A  (2) 

The test results together with those of maximum initial W0 , final Wmax deflections and in-
plane shortening Umax are given in Table 3. 
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Test 
model 

Material properties Measured 
deflection

Maximum 
deflection

Maximum 
shortening 

Collapse 
stress 

E  Yp  Ys  /oW t  max /W t  max /U t   /ult Yp  

 510MPa  MPa  MPa  % % % % 
P1 1.81 218 ---- 61 278 0.38 42.2 

P1R 1.81 218 390 69 188 0.31 70.2 
P1L 1.99 227 270 36 123 0.34 66.5 
P1T 1.99 227 170 9 33 0.27 60.0 
P2R 1.95 224 390 25 117 0.41 66.0 
P2L 2.21 223 270 19 142 0.30 74.0 
P2T 2.21 223 270 3 128 0.37 74.0 
P2 1.78 220 ---- 20 121 0.40 48.2 

P1R1T 1.85 219 326 21 123 0.33 74.0 
P1L1T 1.91 225 326 27 27 0.48 71.1 
P1T1T 1.75 219 273 33 121 0.33 72.1 
P2R1T 1.75 219 326 70 52 0.64 88.6 
P2L1T 1.89 227 326 40 33 0.60 84.6 
P2T1T 1.78 220 273 23 30 0.51 89.1 
P2R2T 1.91 225 326 32 18 0.63 86.2 
P2L2T 1.89 227 326 28 53 0.56 97.4 
P2T2T 2.09 218 273 32 16 0.51 103.2 

Table 3. Summary of material properties and results for Ghavami test models 

 
Figure 6. Stiffened plate model positioned in the Ghavami’s testing rig 

3. Tanaka & Endos’ experiments 
Tanaka & Endo [15] carried out a series of experimental and numerical investigations on the 
ultimate compressive strength of plates having three and two flat-bars stiffeners welded 
longitudinally and transversally respectively. A total of 12 tests were performed. The test 
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specimen was designed so that the longitudinally stiffened plates located in the middle of 
whole test specimens could fail. The test specimens were intended to fail by local plate 
buckling or tripping of longitudinal stiffeners. A typical test rig from the Tanaka & Endo 
study is shown in Figure 7. A stiffened plate model positioned in their testing rig is 
presented schematically in Figure 8. To account for the effect of adjacent panels on the 
collapse behaviour of central panel, three-span models with two adjacent (dummy) stiffened 
panels and supported by two transverse frames were employed. The thickness of plate and 
stiffeners in two adjacent panels was 1.2-1.3 times that of plate and stiffeners in the central 
panel. Table 4, where a=1080mm is the span length of the plate with average plate thickness 
between t=4.38mm to t=6.15mm, represents geometric and material properties for the 
Tanaka & En’os' test structures. The boundaries of stiffened plates were continuously simply 
supported and the in-plane axial compression load was applied longitudinally. The 
maximum measured initial deflections in the plate were ranging between 0.1-0.4 mm. The 
ultimate collapse strength and squash load were calculated in the same manner using 
equations 1 and 2 as those considered by Ghavami [14]. 
 

Structure 
No. 

a 
(mm)

b 
(mm)

t 
(mm)

wh
(mm)

wt  

(mm)
w

w

h
t

 03A
(mm)

Yp

(MPa) 
Ys

 
(MPa) 

E  
(GPa) 

D0  1440 6.15 110.0 9.77 11.26 0.101 234.2 287.1 205.8 
D0A  1440 5.65 110.0 10.15 10.84 0.250 249.9 196.0 205.8 
D1  1200 5.95 110.0 10.19 10.79 0.143 253.8 250.9 205.8 
D2  1560 5.95 110.0 10.19 10.79 0.288 253.8 250.9 205.8 
D3 1080 1440 5.95 103.5 11.84 8.74 0.312 253.8 326.3 205.8 
D4  1440 5.95 118.5 7.98 14.85 0.119 253.8 284.2 205.8 

D4A  1440 5.65 118.5 8.08 14.67 0.379 249.9 274.4 205.8 
D10  1200 4.38 65.0 4.38 14.84 0.515 442.0 442.0 205.8 
D11  1200 4.38 90.0 4.38 20.55 0.503 442.0 442.0 205.8 
D12  1440 4.38 65.0 4.38 14.84 0.523 442.0 442.0 205.8 

Table 4. Geometric and material properties of Tanaka & Endo tests 

 
Figure 7. Tanaka & Endo’s test model 
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Figure 8. Stiffened plate model positioned in the Tanaka & Endo’s testing rig 

4. Finite element simulations 
Since the test specimens in all above-reported experiments, had large deflections and plastic 
deformations, finite element analyses had to be performed using the software offering 
combined geometrical and material non-linear capabilities. In this study, the commercially 
available finite element code, ANSYS [16] was adopted. In the control menu of ANSYS 
solver, the options of “large deflection” and “arc-length method” are activated. The arc-
length method is used to trace the non-linear large deflection response of the models. 

4.1. Shell element formulation 

Both plate and stiffeners are modelled using SHELL43 elements selected from ANSYS 
library of elements. The SHELL43 element in Figure 9 is a so-called plastic large strain 
element and categorised in the family of four-node quadrilateral elements. Each node has 
three translational degrees of freedom in the nodal x, y and z directions as well as three 
rotational degrees of freedom about the nodal x, y and z-axes. The chosen element allows 
for elastic, perfectly plastic, with strain hardening or strain softening, large strain and large 
deflection response [16]. 

 
Figure 9. Shell43 element of the ANSYS FEM program 

4.2. Finite element mesh and boundary conditions 

A convergence study indicated that in the finite element mesh of isotropic and stiffened 
plates respectively, assuming 10 ( / )a b  mesh divisions along local plate panels and 10 
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mesh divisions across them is sufficient to capture accurately the buckling and plastic 
collapse behaviour. Respectively a  and b  represent the length and breadth of local plate 
panels. In order to model the stiffener’s web and flange, respectively 6 to 7 and 5 to 6 
elements are sufficient. However, the purpose of this study was to simulate the testing 
results and finer meshes were therefore used. In the case of Tanaka & Endo tests, to reduce 
the number of mesh divisions and speed up the time of analysis, a rational assumption was 
made. The transverse stiffeners or frames for the case of Tanaka & Endo tests were not 
modelled for simplicity; instead the nodes on the line of attachment of the transverse 
stiffeners were constrained from translational movement out of plate plane. Furthermore, 
the translational movements of these nodes along the axis perpendicular to the line of 
attachment of transverse stiffeners were coupled with each other. Transverse frames were 
modelled in the case of Ghavami’s tests. In both Ghavami and Tanaka & Endo’s tests, the 
stiffened plates were loaded in axial compression along the stiffeners. Also in their tests the 
simply supported boundary conditions were assumed in the models. Figs. 10 and 11 show 
typical finite element models with the simulated boundary conditions, used for the analysis 
of Tanaka & Endo test specimens and Ghavami P2L2T test specimen (as an example). 

 
Figure 10. Finite element model of Tanaka & Endo’s test specimens 

 
Figure 11. Finite element model of Ghavami’s P2L2T test specimen 

4.3 Imperfections 

Welding residual stresses were not modelled specifically in this study. However, in order to 
simulate the complex pattern of residual welding stresses and initial deflections stated in 
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references [14] and [15], a special procedure was employed. Uniform lateral pressure was 
applied first on the stiffened plate model and a linear elastic finite element analysis was 
carried out. This analysis was repeated in a trial and error sequence of calculations so that 
the magnitude of maximum deflection of plate reached that, measured by Ghavami. It is 
assumed that this procedure would simulate both the residual welding stresses and initial 
geometrical imperfection. After satisfying this condition, the information concerning the 
coordinates of nodal points, element coordinates and boundary conditions was transferred 
to a new finite element mesh for the geometrical and material non-linear response analysis 
under the action of longitudinal in-plane compression.  

It should be emphasised that the pattern of initial deflections induced in the Ghavami’s 
specimens [14] were nearly matching the pattern produced by this procedure. For the case 
of Tanaka & Endo’s tests, first an eigenvalue buckling analysis was made using ANSYS, in 
order to capture the three-wave buckling mode deflection of the specimens [15]. Then the 
deflection pattern in this mode was scaled to the same pattern with the maximum 
magnitude of initial deflection, A03, (Table 4) before testing, which has been reported by 
Tanaka & Endo [15]. Nonlinear response analysis under the action of longitudinal in-plane 
compression was performed on this model.  

 
Figure 12. Assumed bi-linear behaviour for the material 

4.4. Material properties  

It is evident that strain-hardening effect has an important influence on the non-linear 
behaviour of isotropic and stiffened plates respectively. The degree of such an influence is a 
function of several factors including plate and stiffener slenderness. In this chapter, 
experimental material behaviour for both plate and stiffener are modelled as a bi- linear 
elastic-plastic with strain-hardening rate of / 65E , as seen in Figure 12. E is modulus of 
elasticity of material. This value was obtained through an extensive study of elastic-plastic 
large deflection analyses made by Khedmati [17] and presents an average value for the 
strain-hardening rate. The application of / 65E  predicts the collapse load with sufficient 
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accuracy. Poisson’s ratio, , in all experimental investigation and FEM analysis was 
considered to be equal to 0.3.  

5. Large deflection behaviour of the tested plates 

A summary of the results obtained through the finite element simulation of the 
experimental research carried out by Ghavami is given in Tables 5 and 6 and that of Tanaka 
& Endo is presented in Table 7. In these tables, the collapse modes from FEM analyses are, 
also, presented. A comparison of the experimental and those obtained results from FEM 
results present a very good agreement. The maximum differences varied between 16 
percents and 22 percents for the series II and III (Table 5) of Ghavami’s experimental result. 
These two extreme differences are related to the plates with L shape stiffener, which does 
not have a symmetrical geometrical shape. The simple assumption considered in the FEM 
simulation of complex pattern of initial imperfections (including both initial deflections and 
welding residual stresses) inherent in the experimental investigation, in addition to not 
having perfect   simply supported boundary conditions in these two series must have led to 
those higher discrepancies. It should be emphasized that it was possible to trace the curve of 
average stress-average strain relationship for any combination of plate and stiffener. Finite 
element simulation results for Ghavami’s test models without transverse frame show that 
the collapse has occurred following the buckling instability of local plate panels (Table 5). 
This was well predicted by FEM for test specimen P2R with only 5 percent difference. 
Detailed information concerning the behaviour of each of the Ghavami’s test specimens are 
well documented in the References [18-22].  

In the analysis of Tanaka & Endo’s tests, the longitudinally stiffened plate located in the 
middle of the test specimens were simulated assuming all edges straight and having simply 
supported conditions. The same boundary conditions were considered in FEM analysis. In 
such cases, finite element simulation results, described also well the interactive buckling of 
plates and stiffeners in most of the cases, (Table 7). The smallest value of stiffener web 
height-to-web thickness ratio belongs to model D3, while the biggest value of this ratio 
corresponds to models D4 and D4A. Model D3 has failed due to local deformation in the 
plate, while in the case of models D4 and D4A the collapse has been produced by large 
plastic deformations both in the plate and stiffeners. Interactive buckling in both plate and 
stiffeners can be observed in other models, where the level of plastic deformations, in the 
plate varies among them. The ultimate strength predicted by FEM are well consistent as 
compared with those obtained by Tanaka & Endo [15]. This could be related to the initial 
deflection of the test specimens which was presented in FEM with a good accuracy. 

A summary of results for three tests from each series of VI, V and VI that had perfect simply 
supported boundary is presented in Table 6. It can be noted that the difference between 
FEM and those of experimental results had only a difference of up to 5 percent. In the 
following, the results of FEM for P1R1T, P2R1T and P2L2T of the Ghavami’s models with 
transverse frame are discussed in details.  
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Collapse mode 



( )

( )
ult FEM

ult EXPERIMENT
 Test model 

 

1.11 P1R 

 

0.84 P1L 

 

0.87 P1T 

 

1.05 P2R 

 

1.22 P2L 

Table 5. Summary of finite element simulation results for some of Ghavami test models without 
transverse frame 



 
Finite Element Analysis – Applications in Mechanical Engineering 100 

Collapse mode 



( )

( )
ult FEM

ult EXPERIMENT
 Test 

model 

 

1.05 P1R1T 

 

1.02 P2R1T 

 

1.02 P2L2T 

Table 6. Summary of finite element simulation results for some of Ghavami test models with transverse 
frame 
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Structure 
No. 

Tanaka & Endo Present



( )

( )
ult FEM

ult EXPERIMENT
 




( )
( )

ult FEM

ult EXPERIMENT
 Collapse mode 

D0 0.977 1.014 

 

D0A 1.028 1.065 

 

D1 0.869 0.911 

 

D2 0.936 0.944 

 

D3 0.860 0.853 

 

D4 0.792 0.866 

 

D4A 0.866 0.960 

 
Table 7. Summary of results for some of Tanaka & Endo tests 
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5.1. P1R1T Ghavami model 

The relative undimensional average stress-average strain relationship obtained by FEM 
analysis for P1R1T model is shown in Figure 13. The P1R1T model failed because of 
torsional buckling and plastic failure mechanism of the longitudinal stiffener (R). The 
torsional failure of the stiffener is induced in the FEM model shortly before the collapse of 
the model due to work softening as can be seen in Figure 13. A comparison between the 
collapse modes of the experimental model, Figure 14 (left) and that of FEM analysis, Figure 
14 (right) is presented. It can be observed that the simulation of plate deformations by FEM 
analysis is almost identical to the failure mode occurred in the test specimen. The work 
hardening of the model started at about y =0.8 and reached the ultimate buckling stress at 
y =1.0 (, y is the average strain and the yield strain respectively). The ultimate buckling 
strength of this model is about 80 percent of the plate yield strength, as can be seen in Figure 
13 in turn it is close to the experimental results presented in Table 3. The FEM result 
overestimated the experimental one by only 5 percent. This mainly could be related to the 
discrepancy in the consideration of initial welding and initial deflection in REM analysis.  

 
Figure 13. Average stress-average strain relationship and spread of yielding at collapse and final step 
of calculation for Ghavami P1R1T model 

 
Figure 14. Deflected mode at collapse for Ghavami P1R1T model obtained by experiment (left) and 
FEA (right) 
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5.2. P2R1T Ghavami model 

As it can be seen from the relative average stress-average strain relationship of P2R1T model 
(Figure 15), the work hardening of the test model started at about y =0.8 and reached the 
ultimate buckling stress at y =0,93 percent in relation to the plate material yield strength. 
Then the work softening or unloading started at y =1.0 together with the local plastic 
deformations in the post-ultimate buckling region. The P2R1T model failed under axial 
compression load due to the buckling in both plate and stiffeners. Such a failure was 
predominant in upper part of the transverse T frame, as can be observed in Figure 16 (left). In 
the lower part of the transverse T stiffener, the plastic deformation in the plate and stiffeners 
was not very large. The comparison of FEM results with that of the experimental one, 
presented in Figure 16 present a relatively perfect prediction of the ultimate buckling modes. 
The FEM result overestimated the experimental one by only 2 percent. This can be also related 
mainly to consideration of the initial welding and initial deflection in the FEM analysis.  

 
Figure 15. Average stress-average strain relationship and spread of yielding at collapse and final step 
of calculation for Ghavami P2R1T model 

 
Figure 16. Deflected mode at collapse for Ghavami P2R1T model obtained by experiment (left) and 
FEA (right) 
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5.3. P2L2T Ghavami model 

As it can be seen in Figure 17 which presents the relative average stress-average strain, 
relationship of P2R2T model, a small work hardening started at about y =0.88 of the plate 
yield stress and reached the ultimate buckling stress of 100 percent. Then a plastic 
deformation started at the y =1.0 up to y =1.7 generating several local plate. After this 
stage the work softening or unloading started with the expansion of local plastic 
deformations in the post-ultimate buckling region. The P2R2T model finally failed due to 
the buckling induced in both plate and longitudinal L stiffeners in the centre of the stiffened 
plate as can be noted well in Figure 18 (left). The P2L2T model showed a high strength 
under in-plane compression load. The FEM deflected form in Figure 18 (right) simulated 
well the experimental results. The FEM result overestimated the experimental one by only 2 
percent as can be seen in Table 6. This could be related principally to the initial welding and 
initial deflection. 

 
Figure 17. Average stress-average strain relationship and spread of yielding at collapse and final step 
of calculation for Ghavami P2L2T model 

 
Figure 18. Deflected mode at collapse for Ghavami P2L2T model obtained by experiment (left) and 
FEA (right) 
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6. Large deflection behaviour of Stiffened plates subjected to combined 
in-plane compression and lateral pressure 

For the stiffened plates in the bottom structure of ships, the basic load case for buckling 
design consists of the following loads applied simultaneously (Figure 19): 

 longitudinal compression arising from the overall hull girder bending, 
 transverse compression arising from the bending of double bottom under lateral 

pressure, and 
 local bending arising from the direct action of lateral pressure. 

 
Figure 19. Basic loads applied on ship stiffened plates 

The continuous plate was assumed to be simply-supported along the stiffener lines with no 
out-of-plane deflection. In reality, however, the stiffener is also subjected to lateral pressure, 
and it may collapse prior to the failure of the panels. The focus of the present chapter is 
concentrated on the buckling and plastic collapse behaviour of continuously stiffened plates 
subjected to combined biaxial compression and lateral pressure with the main objective of 
identification of the collapse modes of the plates subjected to mentioned combination of 
loading condition.  

A series of elasto-plastic large deflection FEM analyses is performed on continuous stiffened 
plates with flat-bar, tee-bar, and angle-bar stiffeners of the same flexural rigidity. The 
buckling/plastic collapse behaviour and ultimate strength of stiffened plates are hereby 
assessed so that both the material and geometrical nonlinearities are taken into account. 

Local plate panels with length, a , of 2400 mm and breadth, b , of 800 mm are considered, 
and their thickness, t , changes  from 13mm, 15mm, and 20 mm. Yield stress of the material, 
Y , is taken as 313.6 MPa, and bilinear stress-strain relationship is assumed with the 
kinematical strain-hardening rate of E /65, where E  is Young's modulus of the material. E  
is considered as 205.8GPa. The cross-sectional geometries of stiffeners are given in Table 8. 
In each group, the stiffeners have the same moment of inertia. A triple span-double bay 
model is applied for the analysis of buckling/plastic collapse behaviour of continuous 
stiffened plate with symmetrical stiffeners (ABDC in Figure 20). When a stiffener has an 
unsymmetrical geometry, a triple span-triple bay model is used (ABFE in Figure 20) [23]. 
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Table 8. Cross-sectional geometries of stiffeners 

 
Figure 20. Stiffened plate model for FEM analysis   

The considered boundary conditions are as follows: 

 Periodically continuous conditions are imposed at the same y-coordinate along the 
transverse edges (i.e. along AC and BD in double bay model and along AE and BF in 
triple bay model). 

 Symmetry conditions are imposed along the longitudinal edges of double bay model 
(i.e. along AB and CD). But periodically continuous conditions are defined at the same 
x-coordinate along the longitudinal edges of triple bay model (i.e. along AB and EF). 

 Although transverse frames are not modelled, the out-of-plane deformations of plate 
and stiffener are restrained along the junction lines of them and the transverse frame. 

 To consider the plate continuity, in-plane movement of the plate edges in their 
perpendicular directions is assumed to be uniform. 
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The lateral pressure ranging from 0 to 60 metres water head initially is applied up to a 
specified value always perpendicularly to the plate surface. Then biaxial compression is 
exerted proportionally by uniform forced displacements.  

Three types of initial imperfections as described in the following are accounted for: 

- initial deflection in the plate with the maximum magnitude of t /100 (Figure 21(a)): 

 
0 sin sin

100p
yt m xW

a b
  (3) 

where m  is the number of buckling half-waves in the plate, 

- initial deflection in the stiffener with the maximum magnitude of a  /1000 (Figure 
21(b)): 

 
0 sin

1000s
a xW

a
 (4) 

- and angular distortion of the stiffener which is taken as (Figure 21(c)): 

  0 sin
1000w

a xh
a

  (5) 

The welding residual stresses are not considered. 

 
Figure 21. Initial imperfections in the stiffened plate models 

6.1. Plates with flat-bar stiffener subjected to combined longitudinal 
compression and lateral pressure 

Average stress-average strain relationships for continuous stiffened plates with flat-bar 
stiffeners subjected to combined longitudinal compression and variable levels of lateral 
pressure, are shown in Figure 22 for the plate thickness of t  =13 mm. The deflection mode 
and spread of yielding at ultimate strength are presented in Figure 23. 

The characteristics of the collapse behaviour can be summarised as follows: 

- When there is no lateral pressure (water head, h =0 m), the stiffened plate under 
longitudinal compression collapses in Eulerian buckling mode, preceded by the local 
buckling of plate with three buckling half waves. 
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- With increase in lateral pressure, the deflection mode at the ultimate strength changes 
from the Eulerian buckling mode to a both-ends clamped mode, and the tripping 
deformation of stiffener gets decreased. 

- Under very high lateral pressure, the stiffener web is fully yielded at both ends of each 
span, and subsequently it is deflected entirely to opposite sideward directions in 
neighbouring spans. Therefore, a kind of simply-supported flexural-torsional 
deformation is produced in the stiffener web. 

- With an increase in the flexural rigidity of the stiffener, ultimate strength of the 
stiffened plate is increased with a decrease in the post-ultimate strength. 

 
Figure 22. Comparison of average stress-average strain relationships for a continuous stiffened plate 
under combined longitudinal thrust and lateral pressure (plate: 2400x800x13 mm) 

 
Figure 23. Change in the deflection mode at ultimate strength for a continuous stiffened plate under 
combined longitudinal thrust and lateral pressure (plate: 2400x800x13 mm, stiffener: flat-bar of type 2) 

For plates with flat-bar stiffeners of type 1 having smaller flexural rigidity, as the plate 
thickness is increased, the ultimate strength is increased with the increase of lateral pressure 
up to a certain value. This is because the collapse mode changes from Eulerian buckling 
mode to a clamped mode in which the plate itself exhibits a higher resistance to longitudinal 
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compression. With a further increase in the applied lateral pressure, however, the 
deteriorating effect of lateral pressure, i.e. enhancing yielding at stiffener becomes more 
predominant and the ultimate strength starts to decrease considerably.  

6.2. Plates with tee-bar stiffener subjected to combined longitudinal 
compression and lateral pressure 

Average stress-average strain relationships for continuous stiffened plates with tee-bar 
stiffeners of type 2 subjected to combined longitudinal compression and variable levels of 
lateral pressure, are shown in Figure 24(a) for the plate thickness of t  =13 mm. Fundamental 
collapse behaviours and ultimate strength of stiffened plates with tee-bar stiffeners are 
almost the same as those for the flat-bar stiffener, but strength reduction in the post-ultimate 
range is smaller comparing with Figure 22(b). This is because the horizontal bending rigidity 
of tee-bar is much greater than that of flat-bar. 

 

 
Figure 24. Comparison of average stress-average strain relationships for a continuous stiffened plate 
under combined longitudinal thrust and lateral pressure (plate: 2400x800x13 mm) 

6.3. Plates with angle-bar stiffeners subjected to combined longitudinal 
compression and lateral pressure 

Average stress-average strain relationships and collapse modes obtained for the continuous 
stiffened plates with angle-bar stiffeners are shown in Figure 24(b) and Figure 25, 
respectively, for the plate thickness of t  =13 mm. 

Unlike the flat-bar or tee-bar stiffeners having symmetrical cross-sectional shape, the angle-
bar stiffener deflects to the same horizontal and vertical directions in all adjacent spans 
(Figure 25). This flexural-torsional deflection of stiffener clamped at both ends constrains the 
panel deformation, resulting in larger ultimate strength and smaller strength reduction in 
the post-ultimate range than those for flat-bar or tee-bar stiffeners. 
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Figure 25. Change in the deflection mode at ultimate strength for a continuous stiffened plate under 
combined longitudinal thrust and lateral pressure (plate: 2400x800x13 mm, stiffener: angle-bar of type 2) 

It is to be noted here that although an angle-bar stiffener is quite effective from the 
viewpoint of buckling/plastic collapse strength, it should be carefully used from the view 
point of fatigue strength [24]. 

6.4. Stiffened plates subjected to combined transverse compression and lateral 
pressure 

The results for the continuous stiffened plates with flat-bar stiffeners of type 2 subjected to 
combined transverse compression are shown in Figs. 26 and 27. 

 
Figure 26. Comparison of average stress-average strain relationships for  a  continuous  stiffened plate 
under combined transverse thrust and  lateral pressure 

When lateral pressure is small, the local rectangular panels collapse as if they were simply-
supported along the edges, accompanied by some rotation of stiffeners. With an increase in 
lateral pressure, the collapse mode changes from the simply-supported mode to the all-
edges clamped mode. These behaviours are basically the same as those observed for 
continuous plate simply-supported along stiffener lines. Since the stiffener is not subjected 
to compression, its deflection is small compared to the panel deflection. 
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Figure 27. Change in the deflection mode at ultimate strength for a continuous stiffened plate under 
combined transverse thrust and lateral pressure (plate: 2400x800x13 mm, stiffener: flat-bar of type 2) 

6.5. Stiffened plates subjected to combined biaxial compression and lateral 
pressure 

A series of FEM analyses is performed on a continuous stiffened plate with flat-bar stiffeners 
subjected to combined biaxial compression and lateral pressure. The results are shown in 
Figure 28. The dotted lines are loading paths for different ratios of applied biaxial 
displacements. The solid line is the obtained envelope of all loading paths representing the 
ultimate strength interaction curve. 

 
Figure 28. Interaction curves for a continuous stiffened plate subjected to combined biaxial thrust and 
lateral pressure (plate: 2400x800 mm, stiffener: flat-bar of type 2) 
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It is seen that each interaction curve basically consists of two parts; a semi-horizontal region 
in which the stiffened plate behaves as if it were under combined transverse compression 
and lateral pressure, and a semi-vertical region where the behaviour as in the case of 
combined longitudinal compression and lateral pressure is dominant.  

7. Conclusion 
Basing the results of this chapter on the analysis of 29 experimental investigation, on 
stiffened steel plates subjected to uniform axial compression load up to final failure, by the 
Finite Element program ANSYS, the following conclusions may be drawn. The selected 
element SHELL43, could trace full-range, elastic-plastic behaviour of the stiffened plates. The 
capability of the non-linear FEM to perform the analysis of stiffened plates has been 
demonstrated through the accurate simulation of the Ghavami and Tanaka & Endo tests. 
Although some simplifying assumptions for the simulation of initial imperfections and 
residual welding stresses were made for reducing the calculation volume and speeding up the 
analysis, the accuracy of the collapse load obtained through FEM simulations is relatively in 
good consistency with the test results. The differences were higher in cases of not having 
perfect simply supported boundary conditions as in series II and III of Ghavami’s test. It was 
shown also, that obtaining deflection mode is possible at any step of loading. This allows 
predicting the local buckling of stiffened plates with relatively good precision.  

For small value of lateral pressure, the local panel and stiffener tend to collapse in a simply-
supported mode. With an increase in the applied pressure, they are likely to fail in a 
clamped mode. Angle-bar stiffener has larger stiffening effects than those of flat-bar and tee-
bar stiffeners having the same flexural rigidity, from the view point of ultimate strength. 
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1. Introduction 

Cylindrical vessels with nozzles are common structural components in many industries, 
such as power engineering, petrochemical, etc. Under the applied pressure and piping 
loads, a high stress concentration is caused by the geometric discontinuity. The connection 
region of the vessel and nozzle will become the weakest location of the entire structure. 
Therefore, it is necessary to have an accurate design method for the structure. The plastic 
limit design method is one possibility. In design, a gross plastic deformation is prevented by 
restricting the allowable load relative to the plastic limit load of the vessels. Therefore, the 
key step in limit design is to determine the plastic limit load of the vessels under different 
loads. 

The plastic limit load estimate for practical engineering materials (with strain hardening and 
geometrical strengthening) can be determined by the twice-elastic-slope (TES) criterion [1]. 
Many approaches to determine the plastic limit load have been contributed by a number of 
authors employing analytical, experimental and finite element methods for components 
under internal pressure, and nozzle or branch pipe loading. Ellyin[2] [3] reported 
experimental results for the elastic-plastic behavior and plastic limit loads of five tee-
shaped cylinder-cylinder intersections under internal pressure, and in-plane or out-of-the-
plane moment. The results indicated that the out-of-plane loading case was the critical 
one. Schoreder[4] provided experimental limit branch moment loads on 4-in. ANSI B16.9 
Tees using different limit load criteria. The results of the study showed that the branch 
moment capacity for the tee models was greater than the theoretical limit load of the 
equivalent nominal size straight pipe. Junker[5] performed inelastic finite element analyses 
to estimate the limit moment for a cylindrical vessel with a nozzle subjected to in-plane 
and out-of-plane moment loadings. The results indicated that the predicted limit moment 
levels agree to within 10% with the experimental results and that the finite element 
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method gives a reasonably accurate determination of limit moments for cylindrical vessels 
with nozzles under in-plane and out-of-plane moments. Moffat[6] performed an 
experimental study of branch connections subjected to external moment loadings. Further, 
in 1991, Moffat et al.[7] provided extensive numerical results for the effective stress factor 
of branch junctions under internal pressure and external moment loads. An empirical 
formula was presented using polynomial equations. Rodabaugh[8] [9] contributed a 
valuable review of limit loads for pipe connections in pressure vessels and piping. In the 
review, a comprehensive overview of pipe connections was provided. Other studies [10]~[13] 
carried out important works on plastic limit analysis of cylindrical vessels under external 
nozzle loadings.  

The objective of this paper is to determine the plastic limit moment by both experiment and 
finite element analysis for cylindrical vessels under in-plane moment loading on the nozzle. 
Based on these results, a parametric analysis is carried out and an empirical formula is 
proposed. 

2. Experimental study 

2.1. Model vessels 

Three model vessels with different d/D ratios were designed and fabricated for the 
experimental study. Every model vessel consisted of a cylinder, nozzle, and flanges for 
fixing and loading bars. Figure 1 shows a typical configuration, and dimensions for the 
model vessels are listed in Table 1. 

 

 
Figure 1. Arrangement of model vessels (mm) 
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 D(mm) L(mm) L' (mm) T(mm) d(mm) l(mm) t(mm) d/ D t /T D / T 
L1 500 1000 500 8 86 1000 3 0.172 0.375 62.5 
L2 500 1000 500 8 123 1000 4 0.246 0.50 62.5 
L3 500 1000 500 8 214 1000 5 0.428 0.625 62.5 

Table 1. Dimensions of model vessels 

The materials of the cylinder and the nozzle are Q235-A (low carbon steel, similar to A36-77) 
and 20# (low carbon steel, similar to A106-80 GrA), respectively. Detailed chemical 
composition and mechanical properties of materials are given in Reference [14]. Figure 2 
shows the engineering stress-strain curve of materials for Q235-A and 20# Steel. 

 
Figure 2. The curve of engineering stress-strain 

2.2. Experimental setup 

The local strains and nozzle displacements under in-plane moment on nozzle were 
measured to obtain the elastic stresses and deformation characteristics of the model 
vessels.The in-plane moment is applied as a force at the end of the nozzle, and the moment 
arm is the distance to the surface of the vessel. 

Strain values at the typical measurement points of the cylinders and nozzles were measured 
using two element strain rosettes. Strain gages were mounted in the axial direction on the 
outside and inside surfaces for the cylinders, and on the outside surface only for the nozzles. 
Figure 3 illustrates the detailed locations of the strain gages for test vessel No. L2. 

Displacement values under in-plane moment (longitudinal loading direction) for the 
selected measurement points on the nozzle were measured using mechanical displacement 
sensors to obtain the load-displacement relationship in the elastic and plastic stages of the 
nozzles. A total of three displacement sensors were installed at locations along the nozzle 
length direction. The locations of the displacement sensors are indicated in Figure1. 

Figure 4 is a photograph of test vessel No. L1 during the test. The figure shows an obvious 
longitudinal deformation of the nozzle under the in-plane moment on the nozzle. 
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Figure 3. Locations of steain gages for model No. L2 

 
Figure 4. Photo of model No L1 during the test 
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2.3. Experimental results 

2.3.1. Plastic deformation behavior 

Figure 5 indicates the elastic-plastic load deformation response at the three measurement 
points on the nozzle for model vessel No. L2. 

 
Figure 5. Load and elastic-plastic deformation response of nozzle 

The intersection area of the nozzle and cylinder also produced an evident plastic 
deformation: the root of the nozzle moved into the vessel wall in the radial direction; as the 
cylinder yielded on the compression side of the cylinder and nozzle. Figure 6 shows an 
actual deformation state for test vessels No.L1and No.L2 under in-plane moment of 4.2kN.m 
and 7.5kN.m. 

2.3.2. Plastic limit moment 

Experimental plastic limit moments were obtained by the use of load versus displacement 
plots of the measurement points on the nozzle and load against strain curves of the key 
gauges located near the junction of the cylinder and nozzle. The plastic limit load is defined 
by applying the twice elastic slope criterion provided by the ASME Boiler and Pressure 
Vessel Code[1]. 

Figure 7 illustrates some typical load-displacement curves and corresponding limit moment 
for the sensor No.3. 

Figure 8 shows some typical load-strain curves and relevant limit moment of the strain gage 
No.6 as an example for the experiment vessels. 
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Figure 6. Load-deformation of the test vessels 

 
Figure 7. Load-displacement curves for test models (Sensor No.3) 
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Figure 8. Load-strains curves for test models (Strains gage No.6) 

Table 2 is a summary and comparison of the experimental plastic limit moment for the three 
model vessels. From the table, it is seen that the limit moments obtained by two 
measurement methods (displacement measuring and strain measuring) are in agreement. 
The maximum difference between the limit moments obtained from the two methods is 
9.76%. For the same model vessel, the limit moments obtained using different measuring 
points also are in good agreement regardless of whether the measuring method is 
displacement measuring or strain measuring. 
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Models L1 L2 L3 
By load-displacement 

method 
Sensor No.1 5.96 10.81 33.42 
Sensor No.2 5.77 10.53 33.22 
Sensor No.3 5.50 10.46 32.41 

 Average value 5.74 10.60 33.02 
By load-strain method Strain gage 

No.1 
5.05 9.73 33.22 

Strain gage 
No.6 

5.37 9.89 32.21 

Strain gage 
No.11 

5.15 10.33 31.09 

Strain gage 
No.16 

5.16 9.77 32.86 

 Average value 5.18 9.93 32.35 
Difference of the average value (%) 9.76 6.32 2.03 

Table 2. Experimental results of plastic limit moment (kN.m) 

3. Finite element analysis  

3.1. Models and mesh 

A static nonlinear finite element analysis of the experimental model vessels was carried out 
using the ANSYS code [15].Three-dimensional isoperimetric solid elements defined by eight 
nodes were used to generate the FEA mesh of the cylinder, nozzle and weld seam between 
the cylinder and nozzle. Two elements were used across the thickness of the shell.Due to the 
symmetry of the structure and loading, only one-half of the test vessel was modeled. Figure 
9 illustrates the finite element mesh of the model vessel No.L2. 

 
Figure 9. Finite element mesh for model vessel No.L2 



 
3D Nonlinear Finite Element Plastic Analysis of Cylindrical Vessels Under In-Plane Moment 123 

3.2. Boundary and loading conditions 

The boundary conditions for the numerical simulation are the same as those used in the 
experimental portion of this study. One end of the cylinder is fixed, while the other end is 
free. All nodes on the symmetry section (longitudinal plane of the vessel) are constrained 
against displacement in the direction perpendicular to the symmetry plane. The FEA models 
were loaded a force at the end of the nozzle along the longitudinal direction of the vessels 
like in the experiment. For the purpose of comparing the results of the element analysis with 
those of the experiments, the same materials and loading increments as those of the test 
vessels were used. As a nonliner geometry analysis, the multilinear isotropic type of 
hardening behavior is used.A multi-linear elastic-plastic material model defined by nine 
points, as given in Table 3, was employed. 
 

Material Point 1 2 3 4 5 6 7 8 9 

Q235-A Stress 
(MPa) 

355 357 378 403 432 463 485 510 519 

Strain 
(με) 

1830 12232 20620 32698 49778 74576 96572 129445 158602 

20# Stress 
(MPa) 

319 334 376 415 464 512 553 584 612 

Strain 
(με) 

1477 16600 29567 48896 77066 113430 157103 198948 262455 

Table 3. Material model 

3.3. Analysis results 

3.3.1. Plastic deformation 

For the same loading condition as the experiment, the nozzle produced an obvious bending 
deformation and a depression of the cylinder on the compression side (in the longitudinal 
section) occurs. Figure 10 shows the local deformation characteristics which are consistent 
with those of the experiment (see Figure 4) for model vessel No. L2. 

3.3.2. Plastic limit moment 

Figure 11 indicates the load-displacement plots of simulation vessels from the sensor No.3 
and corresponding limit moments on the nozzles. 

At the same location as that of the experiment, load strain curves were plated in Figure 12, 
and corresponding limit moments for simulation vessels of strain gage No.6 were also 
shown in Figure 12. 
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Figure 10. Local deformation for model NO. L2 (Mi=13.05 kN.m) 

 
Figure 11. Load-displacement plots for simulation models (Sensor No. 3) 

The plastic limit moments for the three model vessels by FEA are listed in Table 4. 
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Figure 12. Load-strain plots for simulation models (Strain gage No. 6) 

 
Models L1 L2 L3 

By load-displacement 
method 

Sensor No.1 5.27 11.67 30.38 
Sensor No.2 5.39 11.49 30.52 
Sensor No.3 5.53 11.32 30.64 

 Average value 5.40 11.49 30.51 

By load-strain method 

Strain gage No.1 4.95 10.37 28.62 
Strain gage No.6 4.93 10.25 27.99 
Strain gage No.11 4.81 10.46 28.11 
Strain gage No.16 5.02 10.36 28.94 

 Average value 4.93 10.36 28.42 
Difference of the average value (%) 8.70 9.83 6.85 

Table 4. FEA Results for the Plastic Limit Moment (kN.m) 
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4. Summary and comparison 
From Tables 2 and 4, it is seen that the plastic limit moments from the displacement 
measurements are consistent with those determined from the strain measurements, whether 
by experimental method or finite element analysis. 

Using an average of the values from different measuring points and displacement sensors, a 
summary and comparison of the twice-elastic-slope plastic limit load by experiment and 
finite element analysis for the three model vessels are shown in Table 5.  
 

Model 
No. D /T d/ D t/T 

Limit-moment by 
Experiment (kN.m) 

Limit-moment by FEA 
(kN.m) 

Diffe-
rence of 

the 
average 
value) 

(%) 

load-
displace

ment 
method

load-
strain 

method 

avera-
ge 

load-
displace

ment 
method

load-
strain 

method

avera-
ge 

L1 62.5 0.172 0.375 5.74 5.18 5.46 5.40 4.93 5.17 5.31 
L2 62.5 0.246 0.50 10.60 9.93 10.27 11.49 10.36 10.93 6.43 
L3 62.5 0.428 0.625 33.02 32.35 32.69 30.51 28.42 29.47 9.85 

Table 5. Summary and comparison of plastic limit moment 

From Table 5, it can be seen that the results for the plastic limit moment from experiment and 
finite element analysis including displacement and strain measuring techniques are in good 
agreement. The difference between experiment and finite element analysis is within 10%. 

5. Parametric analysis and correlation equation 

5.1. Parametric finite element modeling 

On the basis of the previous studies, parametric modeling was performed. The sets of 
parameters of the analysis models used in this part of the study are given in Table 6. A total 
of 64 configurations were analyzed to investigate the relationship between the various 
geometric parameters and plastic limit moments of the vessel-nozzle structures. The data in 
Table 7 were obtained from the finite element analysis of 64 models. 

5.2. Correlation equation  

A correlation equation for plastic limit load of cylindrical vessels under in-plane moment on 
the nozzle can be obtained by using the data from Table 7 and the software package 
Statistica (non-linear regression). The resulting correlation equation for the plastic limit 
moment on the nozzle is as follows: 

2 1.761 0.555 0.476

[ 0.0148 0.704 1.845 ]iL b
d d d t DM M
D D D T T

  
         

            
         

 

Where, Mb is the limit load of a straight nozzle, 
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Mb=d2tσs[8] (kN.m) 

This equation holds for the following range of parameters: 

0.1≤d/D≤0.4，0.25≤t/T≤1，50≤D/T≤125，500mm≤D≤2000mm 
 

Model d/ D t/T D/T 
1 0.1 0.25 50 
2 0.1 0.5 75 
3 0.1 0.75 100 
4 0.1 1.0 125 
5 0.2 0.25 75 
6 0.2 0.5 50 
7 0.2 0.75 125 
8 0.2 1.0 100 
9 0.3 0.25 100 

10 0.3 0.5 125 
11 0.3 0.75 50 
12 0.3 1.0 75 
13 0.4 0.25 125 
14 0.4 0.5 100 
15 0.4 0.75 75 
16 0.4 1.0 50 

Table 6. Primary parameters of the FE models 

 

Models 
Limit Moment

D=500mm D=1000mm D=1500mm D=2000mm 
1 2.25 16.43 64.37 156.52 
2 3.11 22.56 88.98 216.47 
3 3.52 25.58 97.96 231.89 
4 3.12 24.27 79.05 185.34 
5 5.63 43.73 161.53 398.26 
6 18.31 142.05 539.24 1307.58 
7 6.51 50.14 158.86 367.96 
8 11.52 85.09 282.45 632.46 
9 9.47 73.76 275.15 608.14 
10 11.67 83.05 276.31 650.87 
11 58.02 434.86 1536.42 3500.24 
12 36.21 256.45 853.13 2068.57 
13 13.37 109.21 363.01 548.12 
14 27.52 204.18 680.76 1358.54 
15 52.54 360.04 1221.85 2808.47 
16 118.34 836.42 2804.57 6618.21 

Table 7. Limit loads of the FE models (kN.m) 
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In order to verify the accuracy of the correlation equation, the plastic limit moments of three 
models were calculated and compared with those from the experimental and FEA studies as 
seen in Table 8. 

 

Models L1 L2 L3 Models L1 L2 L3 

Limit-moment by 
Regression 
Equation 
(M EQU ) 

5.55 11.53 33.63 

Limit- moment by 
Regression 
Equation 
(M EQU ) 

5.55 11.53 33.63 

Limit- moment by 
Experiment  

(M EXP ) 
5.46 10.27 32.69 

Limit- moment by 
FEA 

(M FEA ) 
5.17 10.93 29.47 

Difference  

( EQU EXP

EQU

M M

M


) 1.62% 10.93% 2.80%

Difference  

( EQU FEA

EQU

M M

M


) 6.85% 5.20% 12.57% 

Table 8. Comparison of plastic limit moment (kN.m) 

6. Conclusions 

Experiments and comparative 3D-nonlinear finite element analyses of cylindrical vessel-
nozzle connections subjected to an in-plane moment on the nozzle were carried out. In 
addition, an extensive geometric parameter study of such joints was performed with 
FEA.The following general conclusions can be drawn from these studies: 

1. The experimental and 3D-nonlinear finite element analyses including load-strain and 
load-displacement of the nozzle responses provide effective and reliable determination 
methods for the pressure vessel-nozzle (or main-branch pipe) connections subjected to 
external loads on the nozzle. 

2. The plastic limit moments determined from experimental and finite element analysis 
studies are in good agreement. The maximum error of the average experimental versus 
FE calculated limit moments is about 10%. 

3. The limit moments from load-displacement and load-strain curves are in reasonable 
agreement for the analyzed geometry. 

4. The plastic limit moments from experimental and finite element analysis studies are 
greatly increased with an increase of d/D, t/T ratios of the model vessels. 

5. The correlation equation provided in this paper can be used to determine, within 
reasonable limits, the plastic limit moment of cylinder-nozzle connections subjected to 
an in-plane load on the nozzle. 
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1. Introduction 

During World War II, the british made a bomber De Havilland Mosquito which served in 
Europe, Middle and Far East and on the Russian front. Designed as a bomber, it excelled not 
only in this field but also as a fighter aircraft, mine layer, path finder in military transport 
and photo reconnaissence. It was constructed during the Battle of Britain and the first 
prototype made its maiden flight in november 1940, less than a year after the design project 
is started. From an engineering viewpoint, it has one spectacular feature - the fuselage is 
made of a molded plywood-balsa sandwich material, which is strong and yet lightweight 
and equally important in times of war, its components are readily available unlike 
aluminium ones. The importance of the Mosquito in the war effort proved the value of the 
new sandwich materials [1]. Sandwich composites are popular due to high specific strength 
and stiffness. The concept of sandwiches came in as early as the year 1849 AD but their 
potential realized mainly during Second World War as mentioned earlier. Sandwiches are 
composed of two stiff, strong and thin faces (skins) bonded to a light, thick weaker core. 
Faces sustain in-plane and bending loads, while the core resist transverse shear forces and 
keep the facings in place. These provide increased flexural rigidity and strength by virtue of 
their geometry. The high specific strength and stiffness make them ideal in structural design 
[2-3]. Developments in aviation posed requirement of lightweight, high strength and highly 
damage tolerant materials. Sandwich composites, fulfilling these requirements became the 
first choice for many applications including ground transport and marine vessels [4]. 

Sandwich panels are used in a variety of engineering applications including aircraft, 
construction and transportation where strong, stiff and light structures are required [5]. The 
applicability of sandwiches could be improved if it contains a FG core which might help to 
distribute the stresses due to bending or in progressive absorption of energy under impact 
loading [6]. It is required to study the behavior of sandwich panels under these types of 



 
Finite Element Analysis – Applications in Mechanical Engineering 132 

failures with a functionally graded material (FGM) as core to explore their new application 
in bullet proofing and crash worthiness. FGM’s are new class of materials where property is 
function of geometry such as thickness, length etc [7]. These are the materials whose 
composition and microstructure are not uniform in space, but gradually vary following a 
predetermined law [8-11]. FGM’s differ from composites in the sense that property is 
uniform in a particular direction throughout the composite. The concept of FGM’s is 
proposed as early as 1984 by material scientists as a means of preparing thermal barrier 
materials [12]. Closest to FGM’s is laminated composites with variation in laminate 
properties but they possess distinct interfaces across which properties change abruptly [13]. 
For example, a rocket motor casing can be made with a material system such that the inside 
is made of a refractory material, the outside is made of a strong metal, and the transition 
from the refractory material to the metal is gradual through the thickness [14]. FGM’s 
possess a number of advantages that make them attractive in many applications, including a 
potential reduction of in-plane and transverse through-the-thickness stresses, an improved 
residual stress distribution, enhanced thermal properties, higher fracture toughness, and 
reduced stress intensity factors. It is worth mentioning that the distribution of the material 
in functionally graded structures may be designed to various spatial specifications (1). 
Currently, advanced processing methods to introduce compositional gradients into various 
material systems are being developed by materials scientists [15-17]. A typical particulate 
composite with prescribed variation in distribution of constituent phases could be a 
representative FGM. The FGM concept could be borrowed in making sandwiches with FG 
core which exhibit resistance (stiffness) proportional to the applied load can serve some 
applications better than regular sandwiches, like a spring with varying stiffness. Such a 
sandwich could be realized by using a particulate composite with varying volume fraction 
of constituents.  

The flexural behavior of sandwich beams has been studied extensively by many 
investigators [18-23]. Studies on three point bend tests have been conducted in flexural [24-
25] and short beam shear test configurations [26]. An experimental investigation of failure of 
piecewise FG of sandwiches subjected to three point bending is carried out by Avila [27]. In 
addition, fiber reinforced syntactic foams [28-30] and syntactic foam core sandwich 
composites have also been studied for bending properties [31]. Specific properties of 
sandwich with complaint FG core needs attention as it is yet to be reported. 

2. Objectives and scope 

From the foregoing literature survey, clear is the fact that the research reports on 
development of low cost materials for bullet proofing and energy absorption is hardly 
available. A low cost ash filled functionally graded polymer system is proposed for 
applications like ballistic energy absorption. The perusal of sandwich literature review 
prompted a thorough and systematic study on these sandwiches by performing 
experimental characterization of flexural properties. Therefore the work undertaken pursues 
the following objectives:  
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1. To prepare functionally graded rubber cores with varying fly ash reinforcement. 
2. To plan the experiments using DOE for processing FG sandwiches with different factors 

(weight fraction of fly ash, core to total sandwich thickness - C/H ratio and jute skin 
orientation) as per L9 orthogonal array at three levels. 

3. To study the effect of above parameters on mechanical properties of sandwich three 
point loading condition. 

4. To identify the most influential factor governing the mechanical behavior of FG 
sandwiches. 

5. To validate the gradation observed through finite element (FE) modeling using spring 
analogy for variations in property like uniform, linear and piecewise linear. 

6. Comparison of Experimental and FE results for properties of sandwich under 
consideration. 

7. Visual inspection of fractured FG sandwiches under different tests. 

Developed FG cores are utilized in sandwiches to characterize FG sandwiches for their 
suitability in real world applications. Sandwiches are prepared as per design of experiments 
approach so that multiple factors (fly ash weight fraction, C/H ratio and jute skin 
orientation) at three different levels can be simultaneously analyzed. Further, these 
sandwiches are subjected to bending test. Another set of samples called confirmatory set is 
made with 25% and 35% filler by weight. Five samples are subjected to mechanical test and 
the response is averaged out for these five.  

Furthermore, experimental values are compared with results of FE analysis. ANSYS 5.4 
package is used to achieve this objective. Analysis are carried out with three gradation 
variations namely uniform, linear and piecewise linear. Young’s modulus is computed for 
FG cores using FE approach and is compared with experimental result. Specific bending 
strength is the properties focused in simulating sandwich behavior. Finally, elaborate 
discussion on fractured samples is presented as the last segment of this work. 

3. Processing details 

This section presents properties of starting material used, procedures followed for preparing 
FG composites and their sandwiches. Details of reagents / chemicals used at different stages 
like for sample curing are also described. Characteristics of the reinforcements used are also 
enlisted. As outlined in the objectives and scope of the work in the preceding section, the 
objective of the present investigation is to study the properties of functionally graded 
sandwiches. This section lists materials and their properties and methods adopted for 
processing composites with varying content of the filler.  

3.1. Plan of experiment 

In this work experiments are designed based on Taguchi’s DOE approach for FG 
sandwiches [32]. Factors and levels chosen for planning the experiments for FG sandwiches 
are presented in Table 1. Table 2 shows orthogonal array for sandwich. Table 3 presents 
coding of samples bearing varying content of filler, C/H ratio and jute orientation. 
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Details 
Wt Fraction of Fly ash % 

(Factor 1) 
Core to thickness ratio 

(Factor 2) 
Orientation of Jute 

Fabric (Factor 3) 
Level 1 20 0.4 00/900 
Level 2 30 0.6 300/600 
Level 3 40 0.8 450/450 

Table 1. Factors and Levels selected for sandwich with FG core 

 

Experiment 
No. 

Parameters 
Weight Fraction (%) C/H Ratio Orientation 

1 20 0.4 00/900 
2 20 0.6 300/600 
3 20 0.8 450/450 
4 30 0.4 300/600 
5 30 0.6 450/450 
6 30 0.8 00/900 
7 40 0.4 450/450 
8 40 0.6 00/900 
9 40 0.8 300/600 

Table 2. L9 Orthogonal array for FG Sandwich 

 
Sample code Description 

WaRbOc Sandwich specification 
W Indicates factor 1 (Wt. fraction of fly ash) 
a Levels of factor 1 in % (20, 30, 40) 
R Indicates factor 2 (C/H ratio) 
b Levels of factor 2 (0.4, 0.6, 0.8) 
O Indicates factor 3 (Fiber Orientation in skin) 
c Levels of factor 3 (00/900, 300/600, 450/450) 

Table 3. Description of sample codes used for sandwiches 

Experimentation is done with due considerations to all the above parameters with both 
configurations of gradation namely rubber up and ash up. In each trial minimum of five 
replicates are tested. Average of the measured parameters for each set of replicates is 
subjected to statistical ANOVA to find the most influential factor governing the behavior 
using Minitab release 14 statistical analysis tool. 

3.2. Materials 

Details of materials used for main constituents of sandwiches (core and skin) are presented 
hereafter. 
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3.2.1. Core for FG sandwich 

From the standpoint of cost, availability, and the scarce literature prompted for going in for 
an elastomeric material which is naturally occurring and known by the name ‘natural 
rubber’ as the matrix material. Further it is reinforced with fly ash and is used as core in 
sandwich. 

As many of the polymeric systems for developing FGM’s are generally with the tag of 
expensiveness associated, it is decided to examine the gradation in composition and its 
subsequent mechanical behavior when an abundantly available lower density possessing fly 
ashes are the filler materials for the core. Fly ashes are fine particulate waste products 
derived during generation of power in a thermal power plant. These have aspect ratios 
closer to unity and hence are expected to display near isotropic characteristics. These 
inexpensive and possessing good mechanical properties, when used with well established 
matrix systems help to reduce the cost of the system and at the same time either retain or 
improve specific and desirable mechanical properties. Fly ash has attracted interest [33-34] 
lately, because of the abundance in terms of the volume of the material generated and the 
environmental-linked problems in the subsequent disposal. Fly ash mainly consists of 
alumina and silica, which are expected to improve the composite properties. Fly ash also 
consists to some extent hollow spherical particles termed as cenosphere which aid in 
maintenance of lower density values for the composite, a feature of considerable 
significance in weight-specific applications [35-36]. Again, as the fillers do not come under 
irregular shape, the resin spread, is better and as the ashes are essentially a mixture of solid, 
hollow and composite particles displaying near isotropic properties, developing newer and 
utilitarian systems using them should be an interesting and challenging task [37]. 
Compositional details of a fly ash particle are tabulated in Table 4.  

 

Constituent Wt. % 
SiO2 63 

Al2O3 26.55 
CaO 0.42 
Fe2O3 6.7 
TiO2 2.47 

Table 4. Compositional details of fly ash particle 

3.2.2. Skin used in sandwich 

Further on, in this effort, for the skins too, it is decided to employ instead of the well 
explored man-made fibers like glass, carbon or aramid a fairly strong but naturally 
occurring one going by the name ‘jute fiber’ and known for its inexpensiveness. Jute is an 
attractive natural fiber for use as reinforcement in composite because of its low cost, 
renewable nature and much lower energy requirement for processing. In comparison to 
glass fibers jute has higher specific modulus and lower specific gravity as against that of 
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glass fiber. Jute reinforced plastics offer attractive propositions for cost-effective applications 
[38]. These in the form of laminates have much better properties than their neat resin 
counterparts [39]. Better properties of woven jute fabric reinforced composites demonstrated 
their potential for use in a number of consumable goods in an earlier literature [40]. 
Substantial increases in flexural modulus and strength with small amounts of reinforcement 
of unidirectional jute have also been reported [41]. Keeping these things in mind a bi-
directionally woven jute fabric is used in different orientations. Table 5 gives the brief 
overview of comparison between glass fibers and jute fibers. 
 

Property E-glass Jute 
Specific Gravity 2.5 1.3 

Tensile Strength (MN/m2) 3400 442 
Young’s Modulus (MN/m2) 72 55.5 
Specific Strength (MN/m2) 1360 340 
Specific Modulus (GN/m2) 28.8 42.7 

Table 5. Mechanical Properties of Glass and Jute Fibers 

The major drawback of natural fiber reinforced composites is due to its affinity towards 
moisture. Many experimental studies have shown that compatible coupling agents are 
capable of either slowing down or preventing the de-bonding process and hence moisture 
absorption even under severe environmental conditions such as exposure to boiling water. 
Jute fibers/fabrics can be modified chemically through graft co-polymerization and through 
incorporation of different resin systems by different approaches. 

3.2.3. Matrix for skin 

For fabricating both the skins and core a matrix system is required. A thermosetting epoxy is 
chosen for this purpose as far as the skins are concerned. The adhesive used in present work 
consists of a medium viscosity epoxy resin (LAPOX L-12) and a room temperature curing 
polyamine hardener (K-6) supplied by ATUL India Ltd. Epoxy resin is selected as the 
material for the matrix system because of its wide application, good mechanical properties, 
excellent corrosion resistance and ease of processing. Some details including density of the 
constituents of the matrix system chosen are listed in Table 6.  
 

Constituent Trade name Chemical
name

Epoxide 
equivalent

Density 
(kg/m3) Supplier Parts by 

weight 

Resin LAPOX 
L-12 

Diglycidyl Ether 
of bisphenol A 

(DGEBA)
182 - 192 1162 ATUL India 

Ltd. 100 

Hardener K-6 
Tri ethylene 
Tetra amine 

(TETA)
---- 954 - do - 10-12* 

*As suggested in the manufacturer’s catalogue 

Table 6. Details of the constituents of matrix used for skin in sandwich 
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With these materials in hand, FG sandwiches are prepared for mechanical testing. 

4. Processing of FG sandwich 

FG cores used in the present work are produced using the following procedure. The 
gradation in the core is expected due to differential settling of the particles with different 
densities at different depths in the rubber matrix. A measured quantity of natural latex is 
mixed with pre-weighed amounts of fly ash, sulphur (vulcanizer) and zinc oxide (catalyst) 
[42] by adopting gentle stirring for about 1 hour. The mold employed for preparation of core 
specimen is completely covered on all sides with teflon sheet. Subsequently, silicone 
releasing agent is applied to facilitate ease of removal of the cast sample at a later stage. The 
mixture is then slowly decanted into the mold cavity followed by curing at 90°C in an oven 
for about 5-6 hours. The cured rigid plate sample is withdrawn from the mold and the edges 
trimmed. Figure 1 presents one such FG sample which in turn will be used as core in 
sandwiches. 

 
Figure 1. Functionally graded core sample drawn out of mold 

As regards the sandwich skins, a bi-directional woven jute fabric procured from M/S Barde 
Agencies, Belgaum, Karnataka, India is used. This fabric is cut into layers of dimensions 
depending on the sandwich sample size in required orientation. Thickness of each fabric 
piece is 0.5 mm. All the layers of jute fabric are heated in an oven at 700C for 5-10 minutes to 
remove moisture present. The jute stack thickness to form the thin skin, on either side of FG 
core, is computed. This enables one to arrive at the required number of fabric layers to be 
used, as thickness of each layer is known. Based on required C/H ratio number of fabric 
layers to be used are determined (Table 7).  
 

C/H 
Ratio 

Core thickness - 
C (mm) 

Number of jute 
layers below core 

Number of jute 
layers above core 

Sandwich thickness 
- H (mm) 

0.4 4 6 6 10 
0.6 6 4 4 10 
0.8 8 2 2 10 

Table 7. Jute layer arrangement for achieving C/H ratios in sandwich 

With this background data on hand to begin with, the required fabric pieces are dipped in 
mixture of epoxy and K-6 hardener and placed on base plate forming the bottom stack of the 
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sandwich. Now, the earlier mentioned procedure-wise made FG core dipped in resin 
mixture is placed on the bottom stack of skins. Finally, over such an arrangement, the 
remaining layers of jute fabrics having undergone the same procedure for fabrication are 
stacked to constitute the top skin. A procedure of this nature should help in ensuring a 
greater degree of spread of the resin on the fibrillar jute. Following this, the excess resin is 
made to come out by a squeezing operation that is aided by tightening of the mold top plate. 
The mold assembly is then cured at room temperature for about 24-26 hours. The sandwich 
sample is withdrawn from the mold and trimmed to the required size. Similarly numbers of 
samples are made with various core thickness and orientation in skin as schematically 
illustrated in Figure 2. Figure 2 (a) shows top view with different orientations and while the 
front view with varying core thickness to total sandwich thickness (C/H ratio) is presented 
in Figure 2 (b). 

 
Figure 2. (a). Orientation of jute strands in the sandwich skins, (b). Variation of C/H ratio considered for 
analysis 

5. Experimental details 

The mechanical testing of sandwich composites to obtain parameters such as strength, 
stiffness etc. is a time consuming and often difficult process. It is, however, an essential 
process, and can be somewhat simplified by the testing of simple structures such as flat 
coupons. The data obtained from these tests can then be directly related with varying 
degrees of simplicity and accuracy to any structural shape. The test methods outlined in this 
section merely represent a small selection available to the composites scientist. Various FG 
sandwiches fabricated are characterized for three point bending condition. Influence of 
rubber up (rubber rich region towards the top) and ash up (ash rich region below the 
loading point) configurations are critically analyzed. Expected gradation in FG cores is 
presented in Figure 3 (rubber up and ash up). 

The three point bending test is carried out in accordance with ASTM C 393 [42] using 
Instron universal testing machine of model 4206 with loading capacity ranging from 0.1 N to 
150 kN. Figure 4 shows the sandwich sample mounted on flexural test set-up. The thickness 
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to span ratio of the tested sandwich samples is 1:16. The crosshead displacement rate is 
maintained at 2 mm/min. The load deflection data is recorded at equal intervals up to a 
point at which the specimen shows the first sign of failure.  

 
Figure 3.  (a). Rubber Up condition in FG core, (b). Ash Up condition in FG core 

 
Figure 4. Sandwich sample mounted on flexural test set-up 

From load deflection data, bending modulus and strength are estimated using relations 1 
and 2 respectively and the mean of five samples in each sandwich configuration is used for 
inference. 

 Flexural modulusSpecific bending modulus  
Weight density x 

bendingE
g

   (1)  

 
 

Ultimate strengthSpecific bending strength
Weight density

bendingu

x g




   (2) 
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where 
3

6
bendingu

M
B H

   and 
4

FLM   

5.1. Details of finite element modelling 

As outlined earlier, FE model helps to model the constituents of the FG composites and their 
sandwiches to study the interactions of these in load transfer and mechanisms influencing 
their failure. To understand and predict the effect of material as well as geometrical 
parameters on the mechanical behavior of FG fly ash filled rubber composites and their 
sandwiches finite element analysis can be a very effective technique. Towards this, a simple 
disctretized model is built in the software ANSYS® representing FG composites with 
properties varying from top layer to bottom representing gradation.  

Static analysis is performed using FEM software ANSYS 5.4. In this analysis a two 
dimensional model of a FG system is constructed and meshed with 4-node PLANE42 
element. Three different mesh sizes are tested with 4-node elements to check the 
convergence of the model, based on which medium mesh size (element edge length is taken 
as 0.5) is selected. Number of nodes and elements used in the analysis are 800 and 5000 
respectively. 

Finite element values are compared with experimental ones for bending behavior of FG 
sandwich. At the contact surfaces of the layers and between layers and faces of sandwich 
glue conditions are applied to eliminate relative movement of layers with respect of each 
other. Furthermore, nodes are merged at the interface allowing proper coupling between 
layers and interfaces. Figure 5 shows finite element mesh with boundary conditions as a 
typical case considered for three point bending analysis. Skins are being represented by top 
and bottom portions of the structure whereas in between are the four layers having graded 
properties. 

 
Figure 5. Finite element mesh with boundary condition for FG sandwich 

While modeling gradation in ANSYS 5.4, the analogy of springs is used having differing 
stiffness (K1 < K2 < K3 < K4) from the top layer to bottom (Figure 6).  

Sandwiches with FG core are modeled in FEA package ANSYS 5.4 [43] as emphasized 
before. Three different gradations of filler U (uniform), L (linear) and PL (piecewise linear) 
are considered during modeling of FG cores (Figure 7). Young’s modulus and density of FG 
cores are determined for different weight fractions of fly ash from constituent properties are 
provided as input to FEA (Table 8).  
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Figure 6. Spring analogy for gradation in modulus of core material 

 
Figure 7. FG rubber core configurations used in FEA 

Fly ash distributions taken into account for uniform configuration are 20%, 30% and 40% 
through the thickness. For these weight fractions Young’s modulus is estimated using 
inverse rule of mixtures For skins, young’s modulus is estimated by preparing five tensile 
samples of jute/epoxy with orientations of 00/900, 300/600 and 450/450 which are subsequently 
tested as per ASTM D3039 [44] guidelines. Density of skins is determined experimentally 
using procedure outlined in ASTM D792 [45]. Table 8 presents properties of core and skin 
used in the FE analysis. Results of FE analysis are compared with experimental values. 

 
FG Core 

Element Wt. % of 
fly ash 

Young’s modulus (GPa) Density (Kg/m3) 

U L PL* U L PL* 

20% 0.7575 

0.65 
(upper) 

0.75 
(middle) 

0.88 
(bottom) 

0.65 (L1) 

1168.4 
1163.9 (L1)
1167.5 (L2)
1172.5 (L3)

1162.8 (L1) 

2D 
Plane 42 

0.71 (L2) 1165.2 (L2) 
0.79 (L3) 1168.2 (L3) 

0.88 (L4) 1173.5 (L4) 
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FG Core 
Element Wt. % of 

fly ash 
Young’s modulus (GPa) Density (Kg/m3) 

U L PL* U L PL* 

30% 0.89 

0.68 
(upper) 

0.865 
(middle) 

1.15 
(bottom) 

0.68 (L1) 

1330.2 
1324.5 (L1)
1331.1 (L2)
1336.9 (L3)

1323.9 (L1) 
0.79 (L2) 1328.4 (L2) 
0.94 (L3) 1334.6 (L3) 

1.15 (L4) 1337.2 (L4) 

40% 1.1 

0.71 
(upper) 

1.015 
(middle) 

1.66 
(bottom) 

0.71 (L1) 

1444.7 
1435.2 (L1)
1445.7 (L2)
1452.6 (L3)

1434.9 (L1) 
0.88 (L2) 1442.8 (L2) 
1.15 (L3) 1450.6 (L3) 

1.66 (L4) 1455.2 (L4) 

Jute / Epoxy skin 
Orientation Ex (GPa) Ey (GPa) Density (Kg/m3) 

00/900 3.25 2.5 1468 
300/600 1.63 1.25 1451.2 
450/450 2.29 1.77 1444.3 

L-layer, *L1-top layer (rubber rich), L4-bottom layer (ash rich) 

Table 8. Core and skin properties used in FEA 

Bending tested samples are subjected to visual observation using regular photography 
technique for FG sandwich. These methods came in handy during the characterization of 
failures especially in impact failed samples. 

6. Results and discussion 

FG sandwiches are tested for Density, the results of which are presented in Table 9.  

 
Sandwich code Trial-1 Trial-2 Trial-3 Trial-4 Trial-5 Density (Kg/m3) 

W20R0.4O0 1325.6 1328.9 1329.4 1332.8 1330.8 1329.5 
W20R0.6O30 1333.5 1334.8 1336.2 1336.4 1331.6 1334.5 
W20R0.8O45 1342.8 1350.7 1348.6 1345.5 1348.9 1347.3 
W30R0.4O30 1465.8 1464.6 1460.3 1462.1 1463.2 1463.2 
W30R0.6O45 1435.2 1435.9 1431.9 1432.8 1433.7 1433.9 
W30R0.8O0 1467.1 1466.9 1469.3 1470.5 1467.2 1468.2 
W40R0.4O45 1547.6 1549.8 1551.7 1550.6 1548.8 1549.7 
W40R0.6O0 1599.5 1598.8 1595.6 1594.4 1596.2 1596.9 
W40R0.8O30 1564.1 1561.8 1562.4 1560.9 1563.8 1562.6 

Table 9. Density results of FG sandwiches 
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Experimental density values are subjected to statistical analysis (MINITAB 14) to propose 
regression equation which is presented in equation 3.  

  3Density Kg / m 1099 11.6  Fly ash weight %

29.7  C / H Ratio [0.459 Jute Orientation]

     

     
 (3) 

Equation 3 comes handy, which predicts density for large number of samples with varying 
combination of factors within the range of chosen levels without experimentation. Density 
increases with filler content as well as with C/H ratio (core to thickness ratio) being positive 
coefficients while shows a decreasing trend with increase in jute orientation. Obvious reason 
for this might be lower specific weight with increasing skin orientation. 

Three point bending behavior of a FG sandwich composite is investigated under flexural 
loading condition. Results are analyzed for specific modulus and specific bending strength. 
Load deflection data is traced all along the path. The load and corresponding deflection data 
is noted at equal intervals up to a maximum load at which the specimen shows the first sign 
of failure (point ‘A’). The load and deflections obtained during testing are plotted. A typical 
load deflection curve is shown in Figure 8.   

Load-displacement consists of an initial linear part followed by a nonlinear portion (Figure 
8). A nonlinear mechanics of materials analysis that accounts for the combined effect of the 
nonlinear behavior of the facings and core materials (material nonlinearity) and the large 
deflections of the beam (geometric nonlinearity) are observed. The nonlinear load-deflection 
behavior of the beams is attributed to the combined effect of material and geometric 
nonlinearity. The material nonlinearity of the sandwich beam is due to the nonlinear normal 
stress-strain behavior of the facing material and the FG core. For long beam spans, even 
though there is a geometric nonlinearity effect, the overall load-deflection curve of the beam 
does not deviate much from linearity. 

For long beam spans the nonlinearity of the load-deflection curve is mainly due to the 
combined effect of the facings nonlinearity and the large deflections of the beam. Both 
effects, however, have a small contribution to the load-deflection behavior, which shows a 
small deviation from linearity. Some of the general observations made are listed below.  

1. The load decreases sharply after the end of the elastic region due to failure initiation in 
sandwich composites (A to B).  

2. All samples have shown small linear region (B to C) before skin failure in compressive 
side.  

3. Variation in displacement value at which peak load is observed for various types of FG 
sandwiches is considerable.  

4. The failure originates on the tensile side.  

6.1. Specific bending modulus 

From load deflection data the average specific modulus and strength for five samples (Table 
10) are estimated using equations 1 and 2.  
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Figure 8. Load-deflection behavior under three point bend test for sandwich 

 
Sample 
coding 

Sp. flexural modulus (MPa/Nm-1) Sp. flexural strength (MPa/Nm-1) 
Rubber 

Up 
Avg. Ash Up Avg. Rubber Up Avg. Ash Up Avg. 

W20R0.4O0 

3945.23 

3953.07 

3410.9 

3410.29 

132.7 

128.1 

103.55 

98.81 
3933.7 3404.2 128.1 105.32 
3961.5 3419.16 127.7 95.47 
3963.7 3416.4 128.1 99.1 
3961.2 3400.8 123.9 90.61 

W20R0.6O30 

5322.6 

5319.4 

4540.15 

4545.36 

85.3 

88.1 

72.3 

70.7 
5306.8 4545.39 88.1 70.7 
5321.3 4539.4 83.5 71.9 
5322.9 4544.95 92.4 70.7 
5323.4 4556.9 91.2 67.9 

W20R0.8O45 

7391.4 

7387.91 

6150.4 

6155.14 

54.59 

54.59 

45.23 

48.75 
7387.91 6160.73 54.5 50.4 
7377.4 6155.14 57.7 47.9 
7393.4 6155.14 58.1 46.8 
7389.42 6154.28 48.06 53.42 

W30R0.4O30 

2996.2 

3001.3 

2390.31 

2398.92 

141.4 

141.4 

115.43 

113.26 
3003.1 2398.92 141.4 116.23 
3004.5 2398.92 145.5 113.26 
3001.3 2398.92 149.1 111.59 
3001.4 2407.53 129.6 109.79 

W30R0.6O45 

4043.3 

4045.36 

3533.59 

3533.57 

94.76 

101.23 

80.17 

78.75 
4047.6 3528.61 99.14 81.34 
4042.4 3531.75 95.35 75.46 
4045.36 3523.16 106.4 79.1 
4048.12 3550.73 110.5 77.68 
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Sample 
coding 

Sp. flexural modulus (MPa/Nm-1) Sp. flexural strength (MPa/Nm-1) 
Rubber 

Up 
Avg. Ash Up Avg. Rubber Up Avg. Ash Up Avg. 

W30R0.8O0 

6559.3 

6562.65 

6018.2 

6018.2 

148.7 

153.1 

120.1 

119.3 
6562.8 6018.2 149.2 121.3 
6570.4 6018.2 157.3 118.3 
6560.55 6020.9 151.2 121.54 
6560.21 6015.5 159.1 115.26 

W40R0.4O45 

2134.3 

2138.92 

1702 

1692.71 

149.3 

151.4 

110.34 

117.17 
2138.69 1692.67 148.7 121.56 
2141.92 1688.2 152.4 117.17 
2139.26 1690.4 159.3 120.23 
2140.42 1690.3 147.3 116.55 

W40R0.6O0 

4372.5 

4365.98 

4060.12 

4065.98 

188.98 

192.21 

159.21 

154.45 
4370.28 4068.63 193.5 155.29 
4365.39 4065.98 199.7 152.8 
4360.87 4059.3 191.49 155.7 
4360.86 4075.86 187.38 149.25 

W40R0.8O30 

6515.5 

6518.2 

6050.3 

6062.65 

155.23 

159.53 

121.44 

125.45 
6520.7 6070.4 151.8 123.3 
6521.4 6060.9 161.32 127.56 
6518.2 6058.5 164.2 128.9 
6515.2 6073.15 165.1 126.05 

Table 10. Specific bending modulus and strength for FG sandwich 

It can be clearly seen from the table that, rubber up configuration registered higher results 
compared to ash up condition for both the properties in the range of 7 to 30%. Constrained 
straining and resisting forces set up in the FG core might be the reasons for such an 
observation in bending test as depicted in Figure 9. 

 

 

 
 

Figure 9. Loads acting on FG sandwich in bending test 
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Rubber up condition of FG core in sandwich represents ash rich region on tensile side. Crack 
initiation is observed to be from tensile region to compressive region in pre sent loading 
case. In rubber up condition, as stiffer zone is near tensile region, sandwich can take up 
higher loads resulting in better performance compared to homogenous cores and ash up 
condition in FG core. Thereby, such sandwiches are excellent examples of optimized 
designs.  

Developed FG sandwiches can be used in practical cases wherein structures are 
continuously subjected to bending loads. Depending upon whether load is acting 
downwards or upwards sandwiches can be suitable placed with either rubber up or ash up 
configuration as regards to FG cores. 

Figure 10 shows the signal to noise (SN) response plot for specific bending modulus with 
respect to the parameters under study. Response of SN ratio in Specific bending modulus 
for Rubber Up condition is presented in Table 11. 

 

 
Figure 10. Variation of SN ratio in specific bending modulus (Rubber Up) 

 

 Fly ash weight % C/H ratio Orientation 
Level 1 74.61 69.36 73.69 
Level 2 72.68 73.15 73.45 
Level 3 71.90 76.66 72.04 
Effect 2.71 7.30 1.66 
Rank 2 1 3 

Table 11. SN ratio table for specific bending modulus (Rubber Up) 

From the data analysis, vide response Table 11, it is seen that C/H ratio and fly ash % exhibit 
greater influence compared to the orientation. It is further observed from the Table and 
Figure 10 that samples with fly ash content of 20%, C/H of 0.8 and an orientation of 00/900 
possess highest specific bending modulus. This could be due to higher C/H ratio implying 
larger rubber rich region imparting higher modulus to sandwich system.  



 
Flexural Behavior of Functionally Graded Sandwich Composite 147 

6.2. Specific bending strength 

Results of specific bending strength from Table 10 are statistically analyzed and are used to 
rank the variables as presented in Table 12. 

 Fly ash weight % C/H ratio Orientation 
Level 1 38.6 42.92 43.84 
Level 2 42.27 41.56 41.99 
Level 3 44.44 40.83 39.48 
Effect 5.85 2.09 4.36 
Rank 1 3 2 

Table 12. SN ratio table for specific bending strength (Rubber Up) 

From SN response Table, it can be seen that specific bending strength behavior is 
prominently governed by fly ash weight % followed by orientation and C/H ratio. Figure 11 
presents SN plot for specific bending strength incase of rubber up condition.  

 
 

 
 

Figure 11. Plot of SN ratio in specific bending strength (Rubber Up)  

From SN response plot shown in Figure 11, the best combination for specific strength is a 
sample with fly ash content of 40%, C/H of 0.4 and orientation of 00/900. Reasons for this 
could be stiffening effect due to high modulus filler and larger skin-epoxy component for 
lower C/H ratios. Similar results are observed for ash up configuration. Even though 
W20R0.8O45 and W40R0.6O0 are showing higher values (Table 10) for modulus and strength 
respectively, inference on basis of these will not lead to an appropriate conclusion. The 
reason being these values are merely based on average of means. Inference on the grounds 
of SN analysis leads to a meaningful conclusion as it takes means and data spread into 
account. By the SN ratio analysis the best sandwich configurations are W20R0.8O0 and 
W40R0.4O0 for specific modulus and strength respectively. Similar observation is noted for ash 
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up configuration. Regression equation is proposed based on the experimental data for 
specific bending properties are presented in equations 4-7. 

 
 Specific Bending Modulus Rubber Up 1151 – 60.6  Weight % of Fly ash

480  C / H Ratio – 8.38  Jute Orientation

    
        

 (4) 

 
 Specific Bending Strength Rubber Up 70.4 3.87  Weight % of Fly ash

– 44.7  C / H Ratio – 1.19  Jute Orientation

     
       

 (5) 

 
 Specific Bending Modulus Ash Up 342 – 38.2  Weight % of Fly ash

8945  C / H Ratio – 14.2  Jute Orientation

    
        

 (6) 

 
 Specific Bending Strength Ash Up 54.2 2.98  Weight % of Fly ash

– 29.8  C / H Ratio – 0.912  Jute Orientation

     
       

 (7) 

6.3. Finite element analysis 

Specific bending strength is estimated by simulating the sample and loading (Gupta et al. 
2008) in FEA. Figure 12 represents the plot for bending stress in the sample for one typical 
loading case.  

 
 
 

 

 

Figure 12. Bending stress in x-direction for typical case in FG sandwich 
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The breaking load taken from experiment is applied on FE model. For this applied load, 
maximum stress (von misses criteria) is recorded and finally specific strength is determined 
by taking the ratio of maximum stress to the weight of sample. The specific strength values 
obtained from FEA for three variations in gradation (Uniform-U, Linear-L and Piecewise 
linear-PL) and with experimental approach is presented in Table 13.  

 

Sandwich 
configuration 

FEA 
Experimental % Error with PL 

U L PL 
W20R0.4O0 115.4 119.6 132.75 128.1 3.50 
W20R0.6O30 78.2 81.5 92.58 88.1 4.84 
W20R0.8O45 46.9 48.9 58.58 54.59 6.81 
W30R0.4O30 125.1 130.2 147.34 141.4 4.03 
W30R0.6O45 84.4 88.8 110.38 101.23 8.29 
W30R0.8O0 129.7 137.6 160.88 153.1 4.84 
W40R0.4O45 126.6 131.3 169.11 151.4 10.47 
W40R0.6O0 175.2 179.5 201.42 192.21 4.57 
W40R0.8O30 140.2 145.6 165.7 159.53 3.72 

Table 13. Specific bending strength (MPa/Nm-1) results for sandwich 

It is significant to note that the experimental results for specific bending strength match well 
with FEA values especially for the ones with PL gradation. It is observed that bending 
strength obtained from FEA is slightly higher than experimental values. This could be due 
to inability of modeling inhomogenities creeping in during the processing of samples which 
may result in lowering specific strength.  

6.4. Discussion on fractured samples 

Within the elastic region of the load-displacement curve (Figure 8), where no damage is 
induced, the responses of all specimens to the applied loads are quite similar. This is visible 
in the form of nearly constant slope in the elastic region of the load-displacement curves. It 
is observed that the failure starts in the form of crack origination on the tensile side of the 
specimen as displacement increases. On further loading, the skin of the sandwich composite 
that is on the tensile side tends to fracture, causing the final failure of the specimen. 
However, it is not significant enough to lead to the final failure of the specimen. It is 
observed that the entire specimen fractures at a much later instant of skin fracture. 
Appearance of small linear region (B to C in Figure 8) at the end in the load-displacement 
curves is due to stiffening of FG core before final failure. During the loading process, 
deformation also takes place in the compression side of the specimen. Cracks initiate from 
the tensile side and propagate to the compressive side within the core in all sandwiches.  

It is worth discussing the mode of failure. Sandwich samples tested under bending did not 
display the distinct separation into pieces at failure. The FG core being compliant is 
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observed to be successfully absorbing media. Basically two types of failure mechanisms 
observed are skin cracking and delamination between skins and core. Figure 13 shows the 
failed sandwich specimens with their failure modes.  

 
 

 

 
Figure 13. Sandwich failure modes under three point bending loads 

The sandwich beams failed at the center of the two supporting rollers. In this portion of the 
beam, the shear force is zero and only the pure bending exists. Thus, the sandwich samples 
are capable of resisting higher bending moment. As the load on the specimen is increased, 
failures first start under the loads in tensile region and then they propagate towards the 
compressive zone through compliant FG core. All the samples failed under skin tension or 
compression and skin - core debonding. The sandwiches with higher C/H ratio have shown 
skin - core debonding. FG core takes up most of the load applied for higher C/H ratios 
(lesser skin thickness). Since core is made up of rubber composite being compliant in nature, 
relative movements are set up with respect to skin resulting in inter laminar shear stresses. 
As magnitude of these stresses crosses the adhesive strength delamination creeps in. Some 
sandwich samples are seen to be intact even after the first sign of failure. These samples 
exhibited a spring back effect. Samples bearing lower C/H ratio have failed mainly because 
of skin cracking along the jute orientation. Few samples failed due to shearing at skin-core 
interface displayed step formation.  

7. Conclusions 

This section highlights the significant conclusions drawn from the results presented earlier. 
Major inferences from both experimental and finite element investigations are discussed 
below. 

Density of FG sandwiches increases with filler content and C/H ratio while decreases with 
jute orientation. An experimental investigation of sandwiches under bending loads for 
specific modulus and specific strength shows that C/H ratio and fly ash weight fraction 
are the influential factors respectively. Specific bending modulus in both cases (i.e. rubber 
up and ash up) the sample W20R0.8O0 registered the higher value while W40R0.4O0 shows 
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higher value of specific strength. Rubber up configuration registered higher results 
compared to ash up condition for modulus and strength. The ash up condition recorded 
about 30% increase in strength. Increasing fly ash weight fraction rendered an increase in 
bending strength of about 29% for rubber up condition. Specific strength values estimated 
from FEA for bending loads match well with experimental results especially for piecewise 
gradation. 

Author details 

Mrityunjay R. Doddamani* and Satyabodh M Kulkarni 
Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India 

8. References 

[1] Nicoleta Alina Apetre. Sandwich Panels with Functionally Graded Core. PhD thesis. 
Graduate school of the university of Florida; 2005. 

[2] Vinson J. The Behavior of Sandwich Structures of Isotropic and Composite Materials. 
Pennsylvania: Technomic; 1999. 

[3] Gdoutos EE, Daniel IM. Failure modes of composite sandwich Beams. Journal of 
Theoretical and Applied Mechanics 2008;35(1-3),105-118. 

[4] Venkata Dinesh Muthyala. Composite sandwich structure with grid stiffened core. 
Master thesis. Graduate Faculty of the State University and Agricultural and 
Mechanical College, Louisiana, 2007.  

[5] Zenkert D. Handbook of Sandwich Construction. London: EMAS, Chameleon Press; 
1997.  

[6] Abrate S. Impact on Composite Structures. Cambridge: Cambridge University Press; 
1998. 

[7] Paulino GH, Jin ZH. Correspondence Principle in Viscoelastic Functionally Graded 
Materials. Journal of Applied Mechanics 2001;68(1),129-132. 

[8] Koizumi M. Concept of FGM. Ceramic Transactions 1993;34,3-10. 
[9] Suresh S, Mortensen A. Fundamentals of Functionally Graded Materials. London: 

Institute of Materials; 1998. 
[10] Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG. Functionally Graded 

Materials: Design, Processing and Applications. Dordrecht: Kluwer Academic; 
1999. 

[11] Cannillo V, Manfredini T, Siligardi C, Sola A. Preparation and experimental 
characterization of glass–alumina functionally graded materials. Journal of the 
European ceramic society 2006;26(6),993-1001. 

[12] Al-Ajmi MA, Alhazza KA. 5th International Conference on Composite Science and 
Technology, ICCST/5 2005: conference proceeding. Vibration and damping analysis of 

                                                                 
* Corresponding Author 



 
Finite Element Analysis – Applications in Mechanical Engineering 152 

sandwich beams with functionally graded viscoelastic core. Sharjah, United Arab 
Emirates, 125 - 128. 

[13] Parameswaran V, Shukla A. Processing and Characterization of a Model Functionally 
Gradient Material. Journal of Materials Science 2000;35(1),21-29. 

[14] Venkataraman S, Sankar BV. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, 
Structural Dynamics and Materials Conference 2001: conference proceeding. Analysis 
of sandwich beams with functionally graded core. AIAA-2001-1281, Seattle, 
Washington. 

[15] Kirigulige MS, Kitey R, Tippur HV. Dynamic fracture behaviour of model sandwich 
structures with functionally graded core: a feasibility study. Composites Science and 
Technology 2005;65(7-8),1052-1068. 

[16] Pollien A, Conde Y, Pambaguian L, Mortensen A. Graded open-cell aluminium foam 
core sandwich beams. Materials Science and Engineering: A 2005;404(1-2),9-18. 

[17] Gupta N. A functionally graded syntactic foam material for high energy absorption 
under compression. Materials Letters 2007;61(4-5),979-982. 

[18] Krajcinovic D. Sandwich Beam Analysis. Journal of Applied Mechanics 1971;38(1),773-
778. 

[19] Krajcinovic D. Sandwich Beams with Arbitrary Boundary Conditions. Journal of 
Applied Mechanics 1975;42(1),873-880. 

[20] DiTaranto RA. Static Analysis of a Laminated Beam. Journal of Engineering for 
Industry 1973;95(2),755-761. 

[21] Johnson AF, Sims GD. Mechanical Properties and Design of Sandwich Materials. 
Composites 1986;17(4),321-328. 

[22] Teti R, Caprino G. First International Conference on Sandwich Construction 1989: 
conference proceeding. Mechanical Behavior of Structural Sandwiches. Stockholm, 
Sweden, 53-67. 

[23] Lingaiah K, Suryanarayana BG. Strength and Stiffness of Sandwich Beams in Bending. 
Experimental Mechanics 1991;31(1),1-7. 

[24] Gupta N, Woldesenbet E. Microscopic Studies of Syntactic Foams Tested Under 
Three-Point Bending Conditions. American Society of Mechanical Engineers 
2002;1,147-152. 

[25] Maharsia R, Gupta N, Jerro HD. Investigation of flexural strength properties of rubber 
and nanoclay reinforced hybrid syntactic foams. Materials Science and Engineering: A 
2006;417(1-2),249-258. 

[26] Kishore, Ravi, Sankaran S. Short-Beam Three-Point Bend Test Study in Syntactic Foam. 
Part III: Effects of Interface Modification on Strength and Fractographic Features. 
Journal of Applied Polymer Science 2005;98(2),687-693. 

[27] Avila AF. Failure mode investigation of sandwich beams with functionally graded core. 
Composite Structures 2007;81(3),323-330. 



 
Flexural Behavior of Functionally Graded Sandwich Composite 153 

[28] Karthikeyan CS, Sankaran S, Kishore. Influence of chopped strand fibres on the 
flexural behavior of a syntactic foam core system. Polymer International 
2000;49(2),158-162. 

[29] Karthikeyan CS, Chedarampet S, Sankaran S, Kishore. Flexural Behaviour of Fibre-
Reinforced Syntactic Foams. Macromolecular Materials and Engineering 2005;290(1),60-
65. 

[30] Karthikeyan CS, Sankaran S, Kishore. Investigation of bending modulus of fiber-
reinforced syntactic foams for sandwich and structural applications. Polymers for 
Advanced Technologies 2007;18(3),254-256. 

[31] Gupta N, Woldesenbet E. Characterization of Flexural Properties of Syntactic Foam 
Core Sandwich Composites and Effect of Density Variation. Journal of Composite 
Materials 2005;39(23),2197-2212. 

[32] Montgomery DC. Design and analysis of experiments. New York: Wiley; 2001. 
[33] Ferrigno TH., Katz HS., Milewski JV., editor. Handbook of fillers and reinforcements for 

plastics. New York: Van Nostrand Reinhold; 1978, 66-71. 
[34] Kulkarni SM, Anuradha D, Murthy CRL, Kishore. Analysis of filler-fibre interaction in 

fly ash filled short fibre-epoxy composites using ultrasonic NDE. Bulletin of Materials 
Science 2002;25(2),137-140. 

[35] Pedlow JW., Torrey S., editor. Cenospheres, in Coal ash utilization Fly ash, Bottom ash 
and Slag. New Jersy: Noyes; 1978, 353-362. 

[36] Mohapatra R, Rajagopala Rao. Some aspects of characterisation, utilisation and 
environmental effects of fly ash. Journal of Chemical Technology and Biotechnology 
2001;76(1),9-26. 

[37] Kishore, Kulkarni SM, Sharathchandra S, Sunil D. On the use of an instrumented set-up 
to characterize the impact behavior of an epoxy system containing varying fly ash 
content. Polymer testing 2002;21(7),763-771. 

[38] Mohan R, Kishore, Shridhar MK, Rao RMVGK. Compressive strength of jute-glass 
hybrid fibre composites. Journal of Materials Science Letters 1982;2(2),99-102. 

[39] Shah AN, Lakkad, SC. Mechanical properties of jute-reinforced plastics. Fibre Science 
and Technology 1981;15(1),41-46. 

[40] Gowda TM, Naidu ACB, Rajput Chhaya. Some mechanical properties of untreated jute 
fabric reinforced polyester composites. Composites Part A: Applied Science and 
Manufacturing 1999;30(3),277-284. 

[41] Mohan, Rengarajan, Kishore. Jute-Glass sandwich composites. Journal of Reinforced 
plastics and composites 1985;4(2),186-194. 

[42] ASTM C393. Standard Test Method for Flexural Properties of Flat Sandwich 
Construction. ASTM International, PA, USA, 2000. 

[43] Gupta N, Sandeep Kumar Gupta, Mueller BJ. Analysis of a functionally graded 
particulate composite under flexural loading conditions. Materials Science and 
Engineering: A 2008;485(1-2),439-447. 



 
Finite Element Analysis – Applications in Mechanical Engineering 154 

[44] ASTM D3039. Standard Test Method for Tensile properties of polymer matrix 
composite materials. ASTM International, PA, USA, 2008. 

[45] ASTM D792. Standard test methods for density and specific gravity (Relative density) 
of plastics by displacement. ASTM International, PA, USA, 2008. 



Chapter 7 

 

 

 
 

© 2012 Dridi, licensee InTech. This is an open access chapter distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Finite Element Analysis of  
Bias Extension Test of Dry Woven 

Samia Dridi 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/46161 

1. Introduction 

In the composite industry, the shearing behaviour of dry woven plays a crucial role in fabric 
formability when doubly curved surfaces must be covered [1-9]. The ability of fabric to 
shear within a plain enables it to t three-dimensional surfaces without folds [10-12].  

It has been proved that shear rigidity can be calculated from the tensile properties along a 
45° bias direction. Bias Extension tests are simple to perform and provide reasonably 
repeatable results [13-14]. Extensive investigations have been carried out on the textile fabric 
in Bias Extension test [15] 

The tests were conducted simply using two pairs of plates, clamping a rectangular piece of 
woven material such that the two groups of yarns are orientated ±45° to the direction of 
external tensile force. The ratio between the initial length and width of the specimen is 
dened as aspect ratio:  

λ = l0/w0 (see Figure 1a). 

In the case of λ =2, the deformed conguration of the material can be represented by 
Figure1b, which includes seven regions. Triangular regions C adjacent to the xture remain 
undeformed, while the central square region A and other four triangular regions B undergo 
shear deformation [16-17]. 

The present chapter focuses on numerical analysis of Bias Extension test using an 
orthotropic hyperelastic continuum model of woven fabric. 

In the first, analytical responses of the Bias Extension test and the traction test on 45° are 
developed using the proposed model. Strain and stress states in specimen during these tests 
are detailed. 
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Figure 1. Kinematic of Bias Extension test, a: Initial state, b: Deformed state  

In the second, the proposed model is implanted into Abaqus/Explicit to simulate the Bias 
Extension test of three aspect ratios.  

Exploiting numerical results, we studied the effect of the ratio between shearing and traction 
rigidities on homogeneities of stress and strain in the central zone of three Finite Element 
Models (FEM). 

2. The proposed hyperelastic model  

One of significant characteristics of the woven structure is the existence of two privileged 
material directions: warp and weft. We considered that the fabric is a continuous structure 
having two privileged material directions defined by the two unit tensors M1 and M2 as 
follows: 

 1 1M M 
 

1M ; 2 2M M 
 

2M   (1) 

Where 1M


and 2M


are two unit vectors carried by two yarns directions. The sign  indicate 
the tensor product. In the reference configuration, these privileged material directions are 
supposed to be orthogonal and they are defined by g1 and g2 presented by Equation 2.  

 1 1g g 
 

1g , 2 2g g 
 

2g   (2) 

In Lagrangian formulation, the hyperelastic behavior is defined by the strain energy 
function W(E) depending of Green-Lagrange tensor components [18-21]. 

The second Piola Kirchhoff stress tensor S derives is presented in Equation 3: 

 W



S
E

  (3) 

The physical behaviour is completely defined by the choice of W(E). The woven structures is 
very thin, we are interested more particularly in plane solicitations (plane stress or strain) in 
the plan ( 1g , 2g ). We supposed that W(E) is an isotropic function of variables (E, g1, g2). 
Using the representation theorems of isotropic functions, strain energy function W(E) 
depends of invariants: 

 ig :E , 2
ig :E , ( )tr 3E ( 1..2)i    (4) 

a 

A 
B

B

B

B

b

C C
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We choose following invariants to present the strain energy function: 

 1 2 12( ) ( , , )W W I I IE  (5) 

Where 

 iI  ig :E  1..2 ;i  1/2
12

1 ( )
2

I  1 2g E:Eg   (6) 

Ii measured elongations along directions ig . I12 measured the sliding in the plane ( 1g , 2g ) 
witch is the angle variation between warp and weft direction. Components 

ijgE of E in the 
reference system ( 1g , 2g ), are defined as follows: 

 2
1 12 12 1 2

1 1( 1) 1..2, cos( )
2 2i gij gI E i I E          ,   (7) 

1 and 2  are yarns extensions (ratio between deformed and initial lengths) along directions 

of 1g and 2g .   is the angle between 1M


and 2M


. 

The second Piola Kirchhoff stress tensor S can be written as:  

 
2 12 12

1 ( )
2

W W W
I I I I

  
  

  1 2 1 2 2 1
1

S= g g g Eg g Eg  (8) 

A simplified hyperplastic model is proposed. It is based on following assumptions: 

- The coupling between I12 and Ii is neglect, 
- The strain energy function W(E) is expressed by Equation 9: 

 2 2 2
1 1 2 2 12 1 2 3 12

1 1
2 2

W k I k I k I I k I      (9) 

This leads to the constitutive equation: 

 1 1 12 2 2 2 12 1 3( ) ( ) ( )k I k I k I k I k     1 2 1 2 2 1S g g g Eg g Eg  (10) 

So k1 and k2 presented tensile rigidities in yarns directions. k12 described the interaction 
between two groups of yarns. k3 presented the shearing rigidity of woven. 

The relation between components Sgij of second Piola Kirchhoff stress tensor S and Egij of 
Green Lagrange strain tensor E in the base ig  can be presented by one of flowing 
expressions  
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Where: 
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2.1. Out-axes tensile test: Tensile test on 45° 

In tis parts the proposed hyperelastic model is used to study the mechanical behaviour 
during the out-axes tensile test of the dry woven. 

Out-axes tensile test is a tensile test exerted on a fabric but according to a direction which is 
not necessarily warp or weft directions [22]. In the case of anisotropic behavior stress and 
strains tensors have not, in general, the same principal directions. During this test, the 
simple is subjected to a shearing. Particular precautions must be taken to ensure a relative 
homogeneity of the test [23]. 

We considered a tensile test along a direction 1E


 forming an angle ψ0 with orthotropic 
direction ig  (Figure.2). 
 

 
Figure 2. Kinematics of Out-axes tensile test, a: Reference configuration, b: Deformed configuration. 

In the base ie , components of the second Piola Kirchhoff tensor S and the Gradient of 
transformation tensor F are as follows [23] 
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Where: 
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0 0 1
; ; ( )

fL Bf f tg
L B f

      (15) 

Let
0

FP
S

  where F is the tensile force and So is the initial cross section of the specimen. P is 

related to S by: 

 
1

0

FP f S
S

    (16) 

The components of the Green–Lagrange strain tensor E, in the base ie , are as follows: 
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Where  

 2 2 2 2 2
11 1 22 2 1 12 12 1; 2 1 ; 2E f E f f E f          (18) 

The response of the model presented by Equation 8 for this solicitation can be summarised 
as follows: 
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Where:  
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  (20) 

The tensile test on 45° is a particular case of out-axes tensile tests where ψ0=45). To replacing 
ψ0 by 45°, Equation 20 became like the following: 
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S1 and S2 are respectively the maximum and the minimum Eigen values of Piola Kirchhoff 
tensor S .In Tensile test on 45°, Equation 14 shows that: 

 2

1
0

S
S

   (22) 

The expression of the applied force F is deducted from Equation 16: 
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  (23) 

For a balanced woven (k1=k2=k) where the interaction between yarns is neglected (k12=0), the 
expression of F became: 
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  (24) 

The ratio between the minimum and the maximum Eigen values of Green Lagrange tensor 
E., in the tensile test with 45°, is given by Equation 25: 

 32

1 3

k kE
E k k


 


  (25) 

2.2. Bias extension test 

To explainer the pure shearing test of woven fabric, it has been noted that woven cloths in 
general deform as a pin-jointed-net (PJN) [24-28]. Yarns are considered to be inextensible 
and fixed at each cross-over point, rotating about these points like it is shown in Figure 3. 

 
Figure 3. Kinematics Pure shear a: Reference configuration, b: Deformed configuration 
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During the Bias Extension test, the pure shearing occurred in the central zone A and the 
shear angle  is defined by Equation 26: 

 2 cos( )
2 2 2

D da
D

   
      (26) 

The Gradient of Transformation tensor F is presented by Equation 27: 
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Using the proposed model, components Sij ,Eij of the second Piola Kirchhoff stress and Green 
Lagrange strain tensors are given, in the base ie , as follows: 
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Thus 
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And 

 2

1
1

E
E

    (31) 

Where S1 and S2 are respectively the maximum and the minimum Eigen values of the 
second Piola Kirchhoff tensor S and E1 and E2 are respectively the maximum and the 
minimum Eigen values of Green Lagrange tensor E. 

The internal power per unit of volume in zone A is defined by Equation 32: 

 3
1: 2 ( ) ( ) sin(2 )
4A Aa S E k        S E   (32) 

To calculate to internal power per unit of volume in zone B we replace   by 
2
  in Equation 32: 
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Figure 4. Kinematic of Bias Extension Test, a: initial configuration, b: deformed configuration 

The total internal power in the specimen is given by Equation 34: 

 int . .P Va a Vb b     (34) 

Where Va and Vb are respectively the initial volume in zones A and B defined as follows  
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The External power is defined as: 

 2
1.
2

Pext F d FDf          (36) 

The equality between internal and external powers allows to determinate the expression of 
applied force F given by Equation 37: 
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Where 0

0

L
w

   is the aspect ratio. 

3. Numerical simulation of Bias Extension test 

In this section, we simulated the Bias Extension test (BE) using the hyperelastic proposed 
model implanted into Abaqus/Explicit thought user material subroutine (VUMAT). Out put 
of the VUMAT are stress components of Cauchy tensor projected in the Green-Nagdi basis, 
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component of the second Piola Kirchhoff tensor S, and the Green Lagrange tensor E 
projected in 1 2( , )g g  . We can also drew curves of Fore versus displacement. 

The fabric is modelling by rectangular part meshed by continuum element (M3D4R).The 
boundary condition of model is presented in Figure 5a.  

[29-30] compared the numerical results for the biased mesh and the aligned mesh and they 
proved that by using the biased mesh (Figure 5b), where the fibres are run diagonally across 
the rectangular element, neither the deformation profile nor the reaction forces are predicted 
correctly, for this we used the aligned mesh (Figure 5c). 
 

 

 
 
Figure 5. FEM mesh for the Bias Extension simulation, a: boundary condition of FEM, b: biased mesh, c: 
aligned mesh. 

In order to simplify the problem, we used a balanced woven (k1=k2=k=700 N/mm2) and we 
ignored the interaction between extension in yarns direction (k12=0). The analysis is done for 
three different FEM with the same thickness of 0.2mm. Dimensions of FEM are presented in 
table 1. 

 
MEF  Length(mm) Width(mm) Aspect ratio: λ 

1 100 50 2 

2 150 50 3 

3 200 50 4 

Table 1. Dimensions of samples 
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U3=0 
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This analysis is realised on four values of the ratio between shearing and tensile rigidities 

3( 0.007,0.02,0.1,0.3,1)
k
k
  along three paths in FEM (see Figure 6). 

The first path is longitudinal line in the middle of FEM. It joined zones A and C, the second 
path is along the yarn direction and the third path is transversal middle line Flowing results 
are illustrated for a displacement of 10% of initial length. 

 
 
 
 
 
 

 
 
 
 
 
 
Figure 6. Different paths used in analysis 

The deformed mesh with the contour of the Green Lagrange shear strain is shown in 
Figure7. We noticed that appearance of three discernible deformation zones of the Bias 
Extension test in three FEM. No significant deformation occurred in zone C. The main 
mode of deformation in zone A is the shearing. The most deformation of the fabric occurs 
in this zone. 

In to order to study homogeneities of stress and strain states, we compared the analytical 
and the numerical results of strain and stress along three paths of Figure (6). 

Path 1 

 

 

 

Path 2

Path3 
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Figure 7. Deformed mesh with contour of Green Lagrange shear strain E12 for 3k
k

=0.007 and U1=40mm. 

3.1. Strain state 

Figure 8 shows the variation of the maximum principal E1 of Green Lagrange along the first 
path. We noticed that E1 is symmetric with regard to the centre of the FEM. For the higher 

value of ratio of rigidities ( 3k
k

=1), E1 is homogenous and it conformed to the predicted value 

in the case of isotropic elastic material. To decreasing the ratio of rigidities ( 3k
k

), the central 
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AFEM1

FEM2

FEM3



 
Finite Element Analysis – Applications in Mechanical Engineering 166 

zone characterised by the higher value of E1. En addition, we observed the appearance of 
two zones where the strain is not more important. In the first hand, to comparing with the 
analytical value of E1 in the central zone, the numerical values of E1 is closely to that 
predicted in the Bias Extension test for the few shearing rigidity. Zones C coincided with ends 
of the path where the deformation was not more significant. In another hand, we remarked 
that in the central zone of the path, the deformation is not homogenous especially in FEM1and 

FEM2. For more analyse the strains state in FEM, Figure 9 presented the evolution of 2

1

E
E

, 

along the first path. It is clear that to decreasing 3k
k

, the value of 2

1

E
E

tends to (-1) in three FEM. 

This proved that, in spite of the low displacement, the deformation in Bias Extension test is 
influenced by the ratio between shearing and tensile rigidities of the woven.  

3.2. Stress state 

Comparing the numerical and the analytical values of 2

1

S
S

 , we determinate the stress state 

in different FEM for an displacement of 10% along the first path . 

Figure10 show that to decreasing 3k
k

, the value of 2

1

S
S

decrease but never achieved (-1). 

Indeed, if this simulation is interpreted like a Bias Extension test, 2

1

S
S

should be verifying 

Equation 30 in the central zone. However the ratio of principal strain is approximately equal 
to 0. So it is conforming to Equation 22, and the stress state is the traction state.  

In addition to varying the value of 3k
k

, we evaluated the ratio of strain versus the ratio of 

stress in the central element of FEM. In Figure12, it can be noticed that in FEM1, to reducing 

the value of 3k
k

, 2

1

E
E

tend to (-1) and it conformed to the predicted value by Equation 31 for a 

few values of 3k
k

. But 2

1

S
S

 have a negative value and it remain different to (-1). In FEM2, it 

was visibly that 2

1

S
S

stayed proximity null for different value of 3k
k

 thus it verified Equation 

22 but 2

1

E
E

tend to (-1) for few values of 3k
k

. In FEM3, it was clear that for few value of 3k
k

,

2

1

E
E

tend to (-1), but the 2

1

S
S

had positive values. Consequently, the shearing deformation in 

Bias Extension test depends of the ratio of rigidities between shearing and tensile, but the 
stress state is always the tensile stress. 
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Figure 8. Variation of Maximum principal of Green Lagrange strain E1 along the path1  
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Figure 9. Variation of 2

1

E
E

along the path 1 
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Figure 10. Variation of 2

1

S
S

along path 1. 
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Figure 11. Variation of 2

1

S
S

versus 2

1

E
E

 along path 1. 
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3.3. Angle between yarns  

In this section, we compared between the numerical and the predicted values of the angle 
between yarns, along the first path. 

Using the proposed model, the numerical angle between yarns is given by the following 
expression: 
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 
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In the case of the Bias Extension test, the predict angle between yarns in the central zone A is 
given by Equation 39: 
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2B

D d
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   (39) 

The predict angle between yarns in the Tensile test in 45° is given by Equation 41: 
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Figure 12. Comparison between Numerical and Predicted angles between yarns along the path 1 in 
FEM1. 
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Figure 12 demonstrated that the value of the angle between yarns was not uniform in the 
central zone of the FEM and it was not null in ends of the path1. For three FEM, the 
numerical angle between yarns tend to verify the predict angle (solid line) in the Bias 

Extension test for the lower value of 3k
k

This is another reason to justify the influence of the 

ration of rigidities on the shearing deformation of woven. 

3.4. Elongation of yarns 

Under the pin-joint assumption for trellising deformation mode, the edge length of the 
membrane element should remain unchanged during the deformation; thus the Green 
Lagrange stretch Eg11 and Eg22 should be null in Bias Extension test: 

 11 22 0g gE E    (41) 

In Tensile test on 45°, warp and weft yarns are submitted respectively to Green Lagrange 
deformations 

11gE and 
22gE as follows: 
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In the case of balanced fabric without coupling between elongations in yarns directions, the 
warp and weft yarns are submitted to the same elongation: 

So 

 11 22g gE E E    (44) 

Where 

 3
11

3

k
E E

k k



  (45) 

In Figure 13, we compared numerical stretch deformation along the second path and the 
predicted elongation in yarn direction.  

In the first hand, we noticed that the numerical elongation was not null. It became more 

important by increasing the value of 3k
k

 in all FEM. In another hand, numerical value of 

elongation is closely conforming to the expected value in the tensile test in 45° for different 

values of 3k
k

 in all FEM. This analysis provided that during Bias Extension test, yarns are 
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subjected a few elongation. These stretches depend of the value of the ratio between 
shearing and tensile rigidities of woven. Same previous analyses are taken also along the 
third vertical path (Path3) and same results are verified. 

Figure13 represented the evolution of 2

1

S
S

versus 2

1

E
E

 along the third path. Like the first path, 

for few values of 3k
k

, the shearing is the utmost deformation. But in all cases, the Bias 

Extension test is characterized by the tensile state. 

 
Figure 13. Variation of Eg11 along the path 2in FEM1. 

4. Conclusion 

In this work, an orthotropic hyperelastic model test of woven fabric is developed and 
implanted into Abaqus/explicit to simulate Bias-Extension at low displacement. The analysis 
of numerical answers along longitudinal and transversal middle paths, proved, in the first 
hand, that to decreasing the ratio between shearing and tensile rigidities, the state 
deformation became to be conform to that predicted by the proposed model in the Bias 
Extension test for all FEM. In another hand, the angle between yarns tends to verify the 
predicted angle during the Bias Extension test. Although the stress state, is conform to the 
expected analysis of Traction test on 45°. The analysis of Green Lagrange stretching strain in 
the yarns direction, demonstrated that there was an elongation of yarns during test for 
different shearing rigidity. This elongation was exactly conforming to the predicted 
analytical elongation in the Traction test in 45°. Curves of Force versus displacement of the 
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Traction test in 45° applied to of the central zone A is closely to the numerical answers. We 
are able to adjust both curves by coefficients of adjustment. 

This study allowed to verify analytical hypothesis adopted to interpret the Bias Extension 
test. The comparison between in Bias Extension test, the shearing deformation depends of 
the ratio between shearing and tensile rigidities of fabric. In Spite of the low displacement, 
this test presented always a stress state.  
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1. Introduction

Numerical analysis of scattering and propagation of elastic waves in solids gives insight into
physical phenomena under operation of ultrasonic devices such as electromechanical filters
and resonators, nondestructive testing with ultrasonic waves and seismic prospecting. To take
anisotropy of solids and complex structures of composite solids into account, commercial
simulator based on the finite element method are available. Numerical models for finite
element analysis (FEA) must be bounded and infinite half spaces of models should be replaced
with finite domains and absorbing boundary conditions.

Perfectly matched layer (PMLs) is one of popular absorbing boundary conditions for
truncating the computational domain of open regions without reflection of oblique incident
waves. In 1994, Berenger invented a PML for electromagnetic waves in the finite difference
time domain (FD-TD) method by a splitting field method.[1] Because fields in Berenger’s
PML do not satisfy the Maxwell’s equations, two concepts have been introduced for
implementation in the finite element method (FEM) of electromagnetic wave problems:
the analytic continuation or the complex coordinate stretching[2, 3](CCS) and anisotropic
PMLs.[4] Nowadays PMLs for electromagnetic waves are widely used in the FD-TD method
and the FEM.

Extension of PMLs to elastic waves in isotropic solids in the Cartesian coordinate first
appeared in 1996.[5, 6] In the cylindrical and spherical coordinates, PMLs were presented by
using splitting field method in isotropic solids in 1999[7] and by using analytic continuation
in anisotropic solids in 2002.[8] Recently validity and usefulness of PMLs derived from the
analytic continuation in piezoelectric solids was demonstrated. [9–11] Hastings et. al.[5]
reported better performance of PMLs by the FD-TD method than the second-order absorbing
boundary condition (ABC) of Peng and Toksöz: in the range of the incident angle from 0◦ to
80◦ , reflection powers of S- or P-wave, which is excited by a pure S- or P-wave line source

©2012 Hasegawa and Shimada, licensee InTech. This is an open access chapter distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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and propagating in a two-dimensional infinite isotropic solid modeled by a rectangular solid
with its opposite sides attached sponge mediums and other sides imposed ABC or loaded
PMLs, from the PML side are suppressed below -45 and -80 dB with 8 and 16 grid spaces of
the PML region, respectively. On the other hand, reflection power level at the computational
domain edge imposed ABC is in the range of -90 dB to -10 dB. This implies that PMLs yield
more superior approximation of perfect matching than the ABC with thickening PML and
increasing the number of grid spaces.

We recommend that readers who are unfamiliar with PMLs consult Basu and Chopra[12]
about explanations and finite element (FE) implementation of PMLs for time-harmonic
elastodynamics, Michler et al.[13] about derivation of material constants of PML in FE method
by analytic continuation, and Taflove and Hagness[14] about PMLs for electromagnetic waves
in FD-TD method.

Although PML is one of attractive artificial materials, two questions of PMLs derived from the
analytic continuation are left: why are the particle displacements in the complex coordinate
identical to those in the real coordinate and why must we multiply stress tensors by the
Jacobian of the coordinate transformation?

For replying to the questions, we will examine a derivation of PMLs for elastic waves
in the Cartesian, the cylindrical and the spherical coordinates from the differential form
on manifolds. Our results reveal that the components of stress tensors and the particle
displacement vectors in the analytic continuation are not transformed to the real space.[15]
In addition, the rule for determining PML parameters in the Cartesian coordinate holds in the
cylindrical and spherical coordinates.[16]

Mathematical models of PMLs, which are given by differential equations and boundary
conditions, are exactly perfect matching medium. In numerical models, however, discretizing
PMLs changes phase velocities of propagating waves and generates reflection waves from the
PML region.[17] Furthermore, approximation of infinite regions with finite thick layers also
generates reflection waves from the PML terminal.[1, 17, 18]

Estimating matching performance and optimizing parameters of PMLs in a numerical domain
are required before solving problems. Chew and Jin investigated dependence of PML’s
performance on attenuation parameters of FE analysis of electromagnetic wave problems.[18]
For FD-TD method Collino and Monk also carried out such an investigation.[19] Recently,
Bermúdez et al. investigated absorbing functions for time harmonic Helmholtz equations in
the Cartesian and cylindrical coordinates under the condition of ignoring reflection caused
by FE-discretization and showed the advantages of non-integrable absorbing functions over
conventional functions of power series.[20, 21]

Most of these investigations of optimizing attenuation parameters of PML employed
numerical analysis of scattering problems in the two dimensions such as plane or cylindrical
wave scattering problems. For tackling optimization problem of PML parameters, plane wave
scattering problem is appropriate because required resource of computation is small. For
FEA, Chew and Jin[18] modeled scattering of plane waves as electromagnetic field analysis
in the thick layer in the one dimension. But this model has not been applied to elastic wave
scattering.
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In this chapter, we also examine PML performance of FE-models in the frequency range with
scattering problems of elastic waves in an isotropic solid as field analysis in the thick layer in
the one dimension. To the best of our knowledge, quantification of reflection power generated
by FE-discretization has not attracted attention. Recently, for electromagnetic waves, we
reported that the reflection power caused by discretization can be computed by the equivalent
transmission line with its impedance and propagation constant determined by discretized
wave numbers.[15] Because, for elastic waves, the transfer matrix is popular, we explain the
reflection from PMLs by the transfer matrix of elastic waves, and confirm that numerical
results of FE-models may be predicted by replacement of propagation constants of elastic
waves in PML with discretized wave numbers.

2. Derivation of perfectly matched layers for elastic waves by using
complex coordinate stretching and differential form

2.1. Differential form

A particle displacement vector u, particle velocity vector v, density of momenta P, stress
tensor ¯̄T and displacement gradient tensor ¯̄F are given as follows:

u = ui ∂

∂xi , (1)

v = vi ∂

∂xi , (2)

P =
1
3!

Pi
αβγ

∂

∂xi ⊗ dxα ∧ dxβ ∧ dxγ, (3)

¯̄T =
1
2

Ti
αβ

∂

∂xi ⊗ dxα ∧ dxβ, (4)

¯̄F = Fi
α

∂

∂xi ⊗ dxα = du, (5)

where ∂
∂xi and dxi(i = 0, 1, 2) are the contravariant and covariant basis vectors, ⊗ and ∧

represent the tensor product and the cross product, respectively. d is the exterior differential
operator. Newton’s equation of motion is

d ¯̄T =
∂P
∂t

. (6)

Changing the coordinate gives relations of tensor components: for a tensor with a tensor type
of the contravariant of rank 1 and the covariant of rank q, V = Vi

Xα1···αq

∂
∂Xi ⊗ dXα1 ∧ · · · ∧

dXαq = Vk
xβ1 ···βq

∂
∂xk ⊗ dxβ1 ∧ · · · ∧ dxβq , the relation of tensor components is

Vi
Xα1···αq

=
∂Xi

∂xk
∂xβ1

∂Xα1
· · · ∂xβq

∂Xαq
Vk

xβ1 ···βq
. (7)
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Using CCS[2, 3, 8] given by Xi =
∫ xi

s̃i(τ)dτ =
∫ xi

s̃iR(τ) + js̃iI(τ)dτ with the two real
functions s̃iR(τ) and s̃iI(τ) , we have the relation

Vi
Xα1···αq

= s̃i(x
i)
[
s̃α1(x

α1 ) · · · s̃αq(x
αq)

]−1
Vi

xα1···αq
. (8)

Here j is the imaginary unit.

2.2. PMLs in the Cartesian, the cylindrical and the spherical coordinates

In the complex coordinate stretching (CCS), we consider that the real coordinate (x0, x1, x2)
is (x, y, z), (r, θ, z) or (r, θ, φ) for the Cartesian, the cylindrical or the spherical coordinate,
respectively. Assuming that the same constitutive equations in the real Cartesian, cylindrical
and spherical coordinate exist in the complex coordinate, (X0, X1, X2), we have

Pc = ρv c, (9)

Tc
ij = CijklS

c
kl

= Cijkl(Fc
kl + Fc

lk)/2

= CijklF
c
kl. (10)

Here, the superscript c denotes the value in the complex coordinate and the mass density
ρ and the stiffness Cijkl (i, j, k, l = X0, X1, X2) are the values corresponding to original
material parameters, mass density and stiffness constants, of its PML in the Cartesian, the
cylindrical and the spherical coordinates. Using eq. (8) to eqs.(2)-(5), and recalling that the
base differentials dξ, dη and dζ of the general orthogonal coordinate system (ξ, η, ζ) are dual

to the unit vectors ξ̂
hξ

, η̂
hη

and ζ̂
hζ

, we have

vc
i = sivi (no summation), (11)

Pc
i =

si
s0s1s2

Pi (no summation), (12)

Tc
ij =

sisj

s0s1s2
Tij (no summation), (13)

Fc
ij =

si
sj

Fij (no summation). (14)

Here si =
hc

i
hr

i
s̃i with hr

i and hc
i being scale factors of general orthogonal coordinate systems

(x0, x1, x2) and (X0, X1, X2), respectively. Note that the scale factors hi are given by follows:
in the cylindrical coordinate (r, θ, z) h0 = 1, h1 = r, h2 = 1 , and in the spherical coordinate
(r, θ, φ) h0 = 1, h1 = r, h2 = r sin θ. In addition, in the Cartesian coordinate, h0 = h1 = h2 = 1.

The quotient rule and eqs. (9)- (14) yield PML material constants: the mass density ρPML is

ρPML = s0s1s2ρ (15)
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and the stiffness is
CPML

ijkl =
s0s1s2sk

sisjsl
Cijkl (no summation). (16)

Here, s0 = s̃0, s1 = s̃1
R
r , s2 = s̃2 in the cylindrical coordinate system (r, θ, z) with its complex

coordinate (R, Θ, Z), and s0 = s̃0, s1 = s̃1
R
r , s2 = s̃2

R sin Θ
r sin θ in the spherical coordinate system

(r, θ, φ) with its complex coordinate (R, Θ, Φ). In addition, si = s̃i in the Cartesian coordinate
system.

Eqs. (15) and (16) show that PML parameters for elastic waves in solids in the cylindrical and
spherical coordinates may be calculated by the same procedure in the Cartesian coordinate.

2.3. Derivation of PML constants by the analytic continuation

For simplicity, we present a procedure of deriving material constants in only cylindrical
coordinates by the analytic continuation[8] below. Note that in spherical coordinates the same
procedure may be applied. We recommend that the reader who is interesting in the procedure
consult Zheng and Huang.[8]

First we consider Newton’s equation of motion. In a cylindrical coordinate (r, θ, z) , the
governing equations are

−ρω2ur =
1
r

∂

∂r
(rTrr) +

1
r
(

∂Trθ

∂θ
+ r̂ • ∂θ̂

∂θ
Tθθ) +

∂Trz

∂z
, (17)

−ρω2uθ =
1
r

∂

∂r
(rTθr) +

1
r
(θ̂ • ∂r̂

∂θ
Trθ +

∂Tθθ

∂θ
) +

∂Tθz
∂z

, (18)

−ρω2uz =
1
r

∂

∂r
(rTzr) +

1
r

∂Tzθ

∂θ
+

∂Tzz

∂z
. (19)

Here, we use phasor notation. The time dependences of the fields are exp(jωt) where ω is
angular frequency. Applying CCS with a complex coordinate (R, Θ, Z), multiplying the CCS
equations by s0s1s2 and using the assumption of uc

i = ui, R̂ = r̂, Θ̂ = θ̂ and Ẑ = ẑ, we get the
governing equations in the PML:

−ρPMLAω2ur =
1
r

∂

∂r
(rs1s2Tc

rr) +
1
r
(

∂(s0s2Tc
rθ)

∂θ
+ r̂ • ∂θ̂

∂θ
(s0s2Tc

θθ)) +
∂(s0s1Tc

rz)

∂z
, (20)

−ρPMLAω2uθ =
1
r

∂

∂r
(rs1s2Tc

θr) +
1
r
(θ̂ • ∂r̂

∂θ
(s0s2Tc

rθ) +
∂(s0s2Tc

θθ)

∂θ
) +

∂(s0s1Tc
θz)

∂z
, (21)

−ρPMLAω2uz =
1
r

∂

∂r
(rs1s2Tc

zr) +
1
r

∂(s0s2Tc
zθ)

∂θ
+

∂(s0s1Tc
zz)

∂z
. (22)

Here, the mass density of PML is defined as ρPMLA = s0s1s2ρ. When we rewrite components
of stress tensors in the PMLs as TPMLA

ij = s0s1s2
sj

Tc
ij, we may identify eqs.(20)∼(22) to

eqs.(17)∼(19).
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Next we consider the displacement gradient ∇uc = [Γc
kl] in the complex coordinate (R, Θ, Z).

Using definition du = ∇u • (x̂ihidxi) and the assumption of uc
i = ui, R̂ = r̂, Θ̂ = θ̂, Ẑ = ẑ,

and applying CCS with a complex coordinate (R, Θ, Z), we have the relation:

∇uc =

⎡
⎢⎢⎢⎢⎣

∂uc
R

∂R
1
R

�
∂uc

R
∂Θ + R̂ · ∂Θ̂

∂Θ uc
Θ

�
∂uc

R
∂Z

∂uc
Θ

∂R
1
R

�
Θ̂ · ∂R̂

∂Θ uc
R +

∂uc
Θ

∂Θ

�
∂uc

Θ
∂Z

∂uc
Z

∂R
1
R

∂uc
Z

∂Θ
∂uc

Z
∂Z

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1
s0

∂ur
∂r

1
s1

1
r

�
∂ur
∂θ + r̂ · ∂θ̂

∂θ uθ

�
1
s2

∂ur
∂z

1
s0

∂uθ
∂r

1
s1

1
r

�
θ̂ · ∂r̂

∂θ ur +
∂uθ
∂θ

�
1
s2

∂uθ
∂z

1
s0

∂uz
∂r

1
s1

1
r

∂uz
∂θ

1
s2

∂uz
∂z

⎤
⎥⎥⎥⎦ . (23)

Hence we have Γc
kl =

1
sl

Γkl .

Using the quotient rule and the constitutive equation, Tc
ij = CijklΓc

kl, we get the constitutive

equation of the PML in the real coordinate (r, θ, z): TPMLA
ij = s0s1s2

sjsl
CijklΓkl. Therefore, we may

define the stiffness of the PML derived by the analytic continuation: CPMLA
ijkl = s0s1s2

sjsl
Cijkl.

2.4. Comparison with PML material constants derived from differential forms
and the analytic continuation

By the analytic continuation, Zheng and Huang[8] derived the mass density and stiffness of
PML in the cylindrical and spherical coordinates: ρPMLA = s0s1s2ρ and CPMLA

ijkl = s0s1s2
sjsl

Cijkl.
The mass density agree with our result, eq. (15), because multiplying the stress tensors by
the Jacobian of the coordinate transformation, s0s1s2 , adjusts the mass density. We note that
the form of eq. (15) is also derived from eq. (6) with the tensor type of mass density being
covariant of rank 3, i.e. 3-form. The stiffness is different from eq. (16) because in the analytic
continuation, the manipulation of the coordinate transformation corresponding to the part of
stress tensor and the particle displacement vector, contravariant of rank 1, is excluded. This
fact can be confirmed by the derivation procedure presented in the previous section for the
cylindrical coordinate:we put TPMLA

ij = s0s1s2
sj

Tc
ij and use the assumption ui = uc

i .

To show a difference between PML material constants, we consider an isotropic solid with
following stiffness constants in the Cartesian coordinate (x0, x1, x2): Cijkl = λδijδkl + μ(δikδjl +
δilδjk). Here, λ and μ are the Lamé constants of an isotropic solid, the subscripts i, j, k and l
denote the xi-, xj- , xk- and xl-axis, respectively, and δij is the Kronecker delta. Components
of stiffness tensors derived from the differential form and analytic continuation, CPML

ijkl and

CPMLA
ijkl , respectively, are given by

CPML
ijkl =

�
(

λ

s2
i

δijδkl+
μ

s2
j

δikδjl+
μ

s2
i

δilδjk

�
s0s1s2 (no summation), (24)
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i j
Tij

s0s1s2

CPML
ijkl :differential form CPMLA

ijkl :analytic continuation

0 0 1
s2

0
[(λ + 2μ)u0,0 + λ(u1,1 + u2,2)] (λ + 2μ) u0,0

s2
0
+ λ

s0
( u1,1

s1
+ u2,2

s2
)

1 1 1
s2

1
[(λ + 2μ)u1,1 + λ(u2,2 + u0,0)] (λ + 2μ)

u1,1

s2
1
+ λ

s1
(

u2,2
s2

+
u0,0
s0

)

2 2 1
s2

2
[(λ + 2μ)u2,2 + λ(u0,0 + u1,1)] (λ + 2μ)

u2,2

s2
2
+ λ

s2
(

u0,0
s0

+
u1,1
s1

)

1 2 μ
(

u1,2

s2
2
+

u2,1

s2
1

)
μ
s2

(
u1,2
s2

+
u2,1
s1

)

2 1 μ
(

u1,2

s2
2
+

u2,1

s2
1

)
μ
s1

(
u1,2
s2

+
u2,1
s1

)

2 0 μ
(

u2,0

s2
0
+ u0,2

s2
2

)
μ
s0

(
u2,0
s0

+ u0,2
s2

)

0 2 μ
(

u2,0

s2
0
+ u0,2

s2
2

)
μ
s2

(
u2,0
s0

+ u0,2
s2

)

0 1 μ
(

u0,1

s2
1
+

u1,0

s2
0

)
μ
s1

(
u0,1
s1

+
u1,0
s0

)

1 0 μ
(

u0,1

s2
1
+ u1,0

s2
0

)
μ
s0

(
u0,1
s1

+ u1,0
s0

)

Table 1. Components of a stress tensor in a PML material of an isotropic solid in the Cartesian
coordinate.

CPMLA
ijkl =

[
λ

sisk
δijδkl+

μ

s2
j

δikδjl+
μ

sisj
δilδjk

]
s0s1s2 (no summation). (25)

Table 1 shows all components of the stress tensor computed with CPML
ijkl and CPMLA

ijkl . CPMLA
ijkl

gives T̃ij �= T̃ji (i �= j) and we predict that rotational forces may be observed. With CPML
ijkl ,

however, we have a symmetric stress tensor, Tij = Tji (i �= j).

3. Reflection from PMLs discretized for finite element models in the
frequency domain

We consider a plane elastic wave propagating in a half infinite isotropic solid attached with
its PML backed with a vacuum region as shown in Fig.1. Here θ is the incident angle, θp and
θs are propagation angles of P-waves and SV- or SH-waves, L is thickness of the PML, ki and
kr,m (m = 0, 1, 2) are wave vectors of the incident wave and reflected P-, SV- and SH-waves,
respectively.

We use the phasor notation and assume that the time dependences of all fields are exp(jωt),
where j is the imaginary unit and ω is the angular frequency.

When the stiffness component of the isotropic solid Cijkl (i, j, k, l = x, y, z) is given by Cijkl =
λδijδkl + μ(δikδjl + δjlδik) where λ and μ are the Lamé constants and δij is the Kronecker delta,
the stiffness component of its PML CPML

ijkl is

CPML
ijkl = (

λ

s2
i

δijδkl +
μ

s2
j

δikδjl +
μ

s2
i

δilδjk)sxsysz. (26)
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P-wave

θ
ki

kr,0

x=0 x=L
Isotropic solid PML vacuum

L

θp

θskr,1or kr,2

x

y

z

SV- or SH-wave

Figure 1. Reflection by the plane boundary between an isotropic solid and its PML.

Here si (i = x, y, z) is a coordinate stretching factor of i-direction.[2] The mass density of the
PML ρPML is given by

ρPML = sxsyszρ. (27)

Here ρ is the mass density of the isotropic solid. For examining absorbing performance of
PMLs in the x direction, taking an assumption of considering fields being consisted by plane
waves propagating on the x-y plane, we have a differential equation in one variable x: from
Newton’s equation of motion and constitutive equation we get the differential equation in the
PML

CPML
ijkl

∂

∂xj

(
∂uk
∂xl

)
= −ω2ρPMLui (28)

where ui is the component of the particle displacement in the i-direction (i = x, y, z).

In this case, we may choose the coordinate stretching factor as follows:

sx = 1 − jsxI(x),

sy = sz = 1. (29)

Here sxI(x) is the imaginary part of sx and therefore a real function, which controls absorbing
performance of propagating waves in PMLs.

Boundary conditions at the interface of isotropic solid and PML, x = 0, are the nonslip
condition and the continuous condition of the normal component of the stress:[15]

ui(−0) = siui(+0), (30)

Tix(−0) =
sisx

sxsysz
Tix(+0), i = x, y, z. (31)

At the terminal of PML, x = L, the boundary condition is

sisx

sxsysz
Tix(L) = 0, i = x, y, z. (32)
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3.1. Numerical procedure

3.1.1. Finite element analysis

Because finite element formulation of a thick plate with line elements as shown in Fig. 2 is
well known and we use COMSOL MultiPhysics for FEA, we explain the Robin condition at
x = 0 and a formula for reflection coefficients. In the half isotropic solid, the field distribution,

h

1 2 n n+1

Figure 2. Line element with (n+1)-nodes.

components of the particle displacement and stress, can be expressed by superposition of
incident and reflected plane waves:

u(r) = ∑
l

Rlul(r)e
−jkr,l·r + uie

−jki·r. (33)

Where Rl , kr,l, ul(l = 0, 1, 2) and ui are reflection constants, the wave vector, the particle
displacement vectors of reflection P-, SV- and SH-waves and the incident wave respectively,
which are given by the solutions of the Christoffel equation for the isotropic solid. When
r = 0, we have

[u(−0)] = [L]

⎡
⎣

R0
R1
R2

⎤
⎦+ [ui(−0)], (34)

[L] =

⎡
⎢⎢⎣

x̂ · u0 x̂ · u1 x̂ · u2

ŷ · u0 ŷ · u1 ŷ · u2

ẑ · u0 ẑ · u1 ẑ · u2

⎤
⎥⎥⎦ , (35)

[u(x)] = [x̂ · u(x) ŷ · u(x) ẑ · u(x) ]T (36)

where the superscript T denotes transpose and î(i = x, y, z) is the unit vector of the i-direction.
Derivative of (33) with respect to x is

∂

∂x
u = ∑

l
(−jkr,l · x̂)Rlule

−jkr,l·r + (−jki · x̂)uie
−jki·r, (37)

and for r = 0 we have

⎡
⎣

R0
R1
R2

⎤
⎦ = [K]−1

⎛
⎜⎜⎜⎝jki · x̂

⎡
⎣

x̂ · ui(−0)
ŷ · ui(−0)
ẑ · ui(−0)

⎤
⎦+

⎡
⎢⎢⎢⎣

∂x̂·u
∂x |x=−0

∂ŷ·u
∂x |x=−0

∂ẑ·u
∂x |x=−0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ . (38)
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Here

[K] = −j

⎡
⎢⎢⎣

kr,0 · x̂x̂ · u0 kr,1 · x̂x̂ · u1 kr,2 · x̂x̂ · u2

kr,0 · x̂ŷ · u0 kr,1 · x̂ŷ · u1 kr,2 · x̂ŷ · u2

kr,0 · x̂ẑ · u0 kr,1 · x̂ẑ · u1 kr,2 · x̂ẑ · u2

⎤
⎥⎥⎦ . (39)

Using eqs.(34) and (38), we have

[u(−0)] = [L][K]−1

⎡
⎢⎢⎢⎣

∂x̂·u
∂x |x=−0

∂ŷ·u
∂x |x=−0

∂ẑ·u
∂x |x=−0

⎤
⎥⎥⎥⎦

+
�
[I] + jki · x̂[L][K]−1

�
⎡
⎢⎢⎣

x̂ · ui(−0)

ŷ · ui(−0)

ẑ · ui(−0)

⎤
⎥⎥⎦ . (40)

Equation (31) yields

∂[u]
∂x

����
x=−0

= [Ci1]
−1[Ct1]

∂[u]
∂x

����
x=+0

, (41)

[Ci1] =

⎡
⎢⎣

λ + 2μ 0 0

0 μ 0

0 0 μ

⎤
⎥⎦ , (42)

[Ct1] =

⎡
⎢⎣

λ + 2μ 0 0

0 μ 0

0 0 μ

⎤
⎥⎦ , (43)

[Ct1] =

⎡
⎢⎣

λ + 2μ 0 0

0 sy
sx

μ 0

0 0 sz
sx

μ

⎤
⎥⎦ . (44)

Substituting eqs. (30) and (41) into eq. (40), we get the Robin condition:

[L][K]−1[Ci1]
−1[Ct1]

∂[u]
∂x

����
x=+0

− [s][u(+0)]

= −
�
[I] + jkix [L][K]−1

�
[ui(−0)]. (45)

After we solve the distributions of the particle displacements in the PML by COMSOL
MultiPhysics, the reflection coefficients Rl(l = 0, 1, 2) are computed with the following
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Order of finite element Discretized wave number β̃PML

1 1
h cos−1

�
6−2(βPMLh)2

6+(βPMLh)2

�

2 1
2h cos−1

�
15−26(βPMLh)2+3(βPMLh)4

15+4(βPMLh)2+(βPMLh)4

�

3 1
3h cos−1

�
2800−11520(βPMLh)2+4860(βPMLh)4−324(βPMLh)6

2800+1080(βPMLh)2+270(βPMLh)4+81(βPMLh)6

�

4 1
4h cos−1

�
19845−148680(βPMLh)2+134064(βPMLh)4−28800(βPMLh)6+1280(kPMLh)8

19845+10080(βPMLh)2+3024(βPMLh)4+768(βPMLh)6+256(βPMLh)8

�

Table 2. Discretized wave number in PML.

relation derived from eq. (34):

⎡
⎣

R0
R1
R2

⎤
⎦ = [L]−1

⎛
⎝
⎡
⎣

sx 0 0
0 sy 0
0 0 sz

⎤
⎦ [u(+0)]− [ui(−0)]

⎞
⎠ . (46)

Here u(+0) and ui(−0) are particle displacements at PML’s incident side given by FEA
solution and known incident field vector of displacements.

3.1.2. Discretized wave number

The finite element approximation of the propagating elastic fields changes the propagation
constant given by the Christoffel equation, which is called the intrinsic wave number βPML,
to discretized wave number β̃PML. Table 2 shows discretized wave numbers for nodal finite
elements with the polynomial interpolate function as shown in Fig.2 after Scott[22]. Here β

and h are the x-component of the intrinsic wave number of P-, SV- or SH-wave propagating
in the PML and equal interval between nodes, respectively. Figure 3 shows the difference
of the discretized wave number and the intrinsic wave number as the function of the x-axis
propagation constant.

3.1.3. Transfer matrix analysis

Because the structure shown in Fig.1 is a layered structure where the propagation constants in
the isotropic solid and its PML are given as the intrinsic wave numbers and discretized wave
numbers respectively, we can compute the reflection coefficient by the transfer matrix.

In this section, we consider the fields composed of P- and SV-waves propagating on the x-y
plane with the same y-component ky of the P- and SV-wave numbers only since SH-waves
are not coupled with P- or SV-waves and SH-wave scattering problem is straightforward.
Assuming that field distributions do not vary in the z-direction, we have the particle
displacements in the solid:[15]

ux,m = e−jkyy

�
4

∑
i=1

Ai,m
fx,i

sx
e−jkx,isxx

�
, (47)
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Figure 3. Phase error and attenuation error as a function of 2π/(βh) for 1st-, 2nd-, 3rd-, and 4th order
elements.

uy,m = e−jkyy

(
4

∑
i=1

Ai,m fy,ie
−jkx,isx x

)
. (48)

Here, kx,i is the x-component of the intrinsic wave number for the isotropic solid and the
discretized wave number for the PML, the subscripts i = 1 and i = 3 denote P-waves
propagating to +x- and −x-direction respectively, i = 2 and i = 4 denote SV-waves
propagating to +x- and −x-direction respectively, and Ai,m(i = 1, 2, 3, 4, m = 0, 1) is the
amplitude at x = 0 in the isotropic solid (m = 0) or PML (m = 1). fx,i and fy,i are shown in
Table 3. Here θp and θs are angles between the x-direction and the wave vectors of P-waves or
SV-waves as shown in Fig. 1. In the isotropic region, we set sx = 1.

i 1 2 3 4
fx,i cos θp − sin θs − cos θp sin θs
fy,i sin θp cos θs sin θp cos θs

Table 3. Displacement directions of P- and SV-waves, fx,i and fy,i.

Using the boundary conditions at x = 0 and x = L, and eliminating Ai,1, we get the relation

[
A3,0

A4,0

]
=

[
X31 X32
X41 X42

] [
X11 X12
X21 X22

]−1 [
A1,0
A2,0

]
(49)

where [X] is the square matrix with four columns and rows given by

[X] = [Y0]
−1[s][Y1][T(L)][Y1]

−1[s]−1. (50)
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Here,

[s] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sx 0 0 0

0 sy 0 0

0 0
sx

sysz
0

0 0 0
1
sz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (51)

[Y0] =

⎡
⎢⎢⎢⎢⎢⎣

Y11,0 Y12,0 Y13,0 Y14,0

Y21,0 Y22,0 Y23,0 Y24,0

Y31,0 Y32,0 Y33,0 Y34,0

Y41,0 Y42,0 Y43,0 Y44,0

⎤
⎥⎥⎥⎥⎥⎦

, (52)

Y1i,0 = fx,i, (53)

Y2i,0 = fy,i, (54)

Y3i,0 = −j
�

kx,i(λ + 2μ) fx,i + kyλ fy,i

�
, (55)

Y4i,0 = −j
�

kyμ fx,i + kx,iμ fy,i

�
, (56)

[Y1] =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y11,1 Y12,1 Y13,1 Y14,1

Y21,1 Y22,1 Y23,1 Y24,1

Y31,1 Y32,1 Y33,1 Y34,1

Y41,1 Y42,1 Y43,1 Y44,1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (57)

Y1i,1 = fx,i/sx , (58)

Y2i,1 = fy,i, (59)

Y3i,1 = −j
�

kx,isx
1
sx
(λ + 2μ)

fx,i

sx
+ ky

1
sx

λ fy,i

�
, (60)

Y4i,1 = −j
�

kysxμ
fx,i

sx
+ kx,isx

1
sx

μ fy,i

�
, (61)

[T(x)] =

⎡
⎢⎢⎢⎢⎢⎢⎣

e−jkx,1sxx 0 0 0

0 e−jkx,2sxx 0 0

0 0 e−jkx,3sxx 0

0 0 0 e−jkx,4sxx

⎤
⎥⎥⎥⎥⎥⎥⎦

. (62)
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The reflection coefficients at the boundary x = 0, we obtain (A3,0/A1,0 and A4,0/A1,0) with
A2,0 = 0 when the incident wave is the P-wave and in the case of SV-wave incidence we obtain
(A3,0/A2,0 and A4,0/A2,0) with A1,0 = 0.

3.2. Computed results

Figure 4 shows the computed results of the reflection coefficient dependence on 2π/(βh)
in the case of the SH-wave incidence with incident angle θ = 0, the attenuation coefficient
sxI(x) = 0.1 and normalized thickness ksL = 24π. Here ks is the intrinsic wave number of the
SH-wave in the isotropic solid. Decreasing the interval between adjacent nodal points h, the
reflection coefficient approaches the value estimated by the truncation effect which caused by
the reflection at the PML end terminal and can be estimated by attenuated waves in the PML,
20 log10(exp(2ks Ls2I)) = 20 × 4.8π log10 e = 131dB. A higher order element causes lower
reflection because of a better approximation of the intrinsic wave number. Figure 5 shows
dependence on the incident angle. Smaller intervals of finite element nodes, ksh = 0.1π,
gives a better approximation than ksh = 0.2π. Increasing the incident angle, β decreases
and the approximation of the intrinsic wave number with discretized wave number becomes
better. Hence, the reflection by FE-discretization decreases. However, incident angle becomes
larger than the angle such as about 63.5 degrees for 1st order element, reflection increases
because decreasing β yields decreasing of wave attenuation in PMLs and the reflection by the
truncation effect increases. Figures 4 and 5 show that the results of the transfer matrix agree
well those of FEA and we confirm that the reflection of the FE-model of the PML may be
explained with the discretized wave number and the truncation effect.

We consider an isotropic solid and its PML with the Poisson ratio σ=0.3 in this section.
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Figure 4. Dependence of SH-wave perpendicular incidence on 2π/(βh) for ks L = 24π and sxI(x) = 0.1.
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Figure 5. Dependence of reflection coefficients of the SH-wave perpendicular incidence with the
attenuation coefficient sxI(x) = 0.1 and normalized thickness ks L = 24π on 2π/(βh). Here N is the
number of FEs.
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Figure 6. Dependence of reflection coefficients on 2π/(βh) in the case of perpendicular P-wave incident,
ks L = 24π and sxI(x) = 0.1.

Next, we consider P-wave or SV-wave scattering problems. Figure 6 shows the computed
result of the reflection coefficient dependence on 2π/(βh) in case of the P-wave perpendicular
incidence with the attenuation coefficient sxI(x) = 0.1 and normalized thickness ksL = 24π.
Because the result of the SV-wave perpendicular incidence is the same result of the SH-vave
perpendicular incidence owing to a symmetry of the problem, Fig. 4 also shows the result
of SV-wave incidence with the attenuation coefficient sxI(x) = 0.1 and normalized thickness
ks L = 24π. Both cases also approaches the value estimated by the truncation effect, -70.0dB
and -131dB. Note that the wave number of the P-wave is

√
μ/(λ + 2μ) =

√
2/7 times of

the SV-wave wave number. Dependencies of P- and SV-wave reflections on P- and SV-wave
incident angle are shown in Figs. 7 and 8, respectively. Reflection coefficients of incident
waves computed by the transfer matrix except the range that is larger than the critical
angle, about 32.3 degrees, of SV-wave incidence are good agreement with the results of FEA.
However, reflection coefficients of converted waves from incident waves are smaller for the
SV-wave excited by the incident P-wave and larger for the P-wave than the results of FEA. We
still can not explain this discrepancy.

Increasing sxI , the reflection coefficient of P-wave in case of the P-wave incidence decreases
in the incident angle range that is larger than 59 degrees. In the lower range, the reflection
does not decrease because FE-discretization effect dominates the reflection. In the case of
SV-wave incidence, we confirm that the P-wave converted from the SV-wave is amplified in
the incident angle range that is lager than the critical angle when P-wave’s wave number
is zero in the isotropic region because of PML’s intrinsic characteristics for non-propagating
waves.
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(b) sxI(x) = 0.2.
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Figure 7. Dependence on P-wave incident angle θi for ksh = 0.2π and ks L = 24π.
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Figure 8. Dependence on SV-wave incident angle θi for ksh = 0.2π and ks L = 24π.

4. Conclusions

In this chapter, first, PMLs in the Cartesian, the cylindrical and the spherical coordinates
for elastic waves in solids were derived from differential forms on manifolds. Our results
show that PML parameters in any orthogonal coordinate system for elastic waves in solids
may be determined by the same procedure in the Cartesian coordinates. Next, scattering of
elastic waves in an isotropic solid was analyzed by field analysis in the thick layer in the one
dimension. Numerical results show that the reflection from PMLs by the transfer matrix of
elastic waves approximates the numerical results of FE-models successfully. We concluded
that the reflection by FE discritization may be explained by FE-approximation of the intrinsic
wave number.
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1. Introduction 

The study of the dynamic behaviour of materials falls in a multidisciplinary area where 
many different disciplines converge. The definition of the state of the solid body subject to 
various actions is very different from the conditions of almost static load, or single dynamic 
load.  

Complex dynamic actions (i. e. explosion, travelling waves, etc.) request an approach where 
both inertia and kinetics of the material are fundamental elements to describe the variable 
answer in terms of stress and strain. 

The topics covered in the chapter are the following: 

A first section, where particular attention about the shock waves-induced phase 
transformations and chemical changes will be given. A modelling coupled multifield 
processes will be introduced in the multiphase solids case through constitutive assumption, 
energy balance and mass transfer and a reaction-diffusion model.  

A second part in which some applications of finite element analysis to multi-physics 
dynamic problems is presented and discussed.  

2. Waves equations 

When an elastic media is subject, over one or more points, to fast actions then media 
acceleration results. The strain field resulting is carried out within the media by elastic 
waves, and so the new and variable stress field should be equilibrated [1, 2]. 

Let us call u the displacement field,  and  the Lamè elastic constants,  the media density 
then, in the isotropic, homogeneous and elastic media we have the follow motion equation: 
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 2 ( ) ( )u u u          (1) 

In the Eq. (1) the symbol  represents the nabla differential operator. Under the volume 
forces equal to zero one possible solution to the Eq. (1) has the form: 

 u(x, t) = u(t - nx / c)  (2) 

where n is a constant unit vector and c represents the velocity. Representing the Eq. (2) the 
solution to the Eq. (1) we observe that the Eq. (2) is a plane wave equation scattering in n 
direction, with c velocity. When a direction is fixed, for example x1, then we have: 

 1( , ) [ ( / )]u x t u t x c   (3) 

Generally, an elastic wave can be of two kinds, longitudinal (volume wave) or transversal 
(shear wave), and respective velocities go with the function: 

 [( 2 ) / ]; ( / )sqr sqr          (4) 

As a principle, we have an elastic wave’s emission when a fast, and localized variation on 
the body force exists. 

In this case, the Eq. (1) appears as a Green tensor, that is a second order tensor time 
dependent, Gij (x, t; , ). Neglecting isotropic source, the dynamics source gives out 
longitudinal and transversal waves with various amplitude according to the direction.  

The wave shape represents the signal shape reproduced by the source, in other words the 
temporal course of the source namely, the F(t) function.  

Since the Green tensor calculation appears with difficulty, through known references, it 
becomes possible to proceed by the Helmholtz potential method, and therefore to derive, for 
convolution, the Green tensor final form [3]: 

 
3 1 1

2 1 2 1 1

( , ;0,0) (1 / 4 )(3 ) [ ( ) ( )]

[(1 / 4 ) ( )] [(1 / 4 )( ) ( )]
ij i j ij

i j ij i j

G x t r t H t r H t r

t r r t r

  

  

     

    

    

          
 (5) 

Where i and j are the director cosine of x,  the x varied position and ij the Kronecker 
delta.  

The Eq. (5) is composed by 3 terms, all depending on the distance. We have the first one, 
called close field, while the other two called away fields. We observe not separable waves in 
the close field while, in the away field longitudinal and transversal waves appear distinct. 
All of this allows, in the next modelling to consider only the close field and then 
longitudinal and transversal motions together. 

Here we consider plane waves travelling in an elastic half-space and, without loss of 
generality, we affirm that the wave normal lies in the vertical plane of the half-space. 
Referring to the infinite space case, we assume that the particle motion, due to dilatational 
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effects, belongs to the wave normal direction and therefore lies in the vertical plane. 
Otherwise, the particle motion, due to shear effects, present components in either vertical or 
horizontal plane. Introducing the functions H and , called the Helmholtz potential 
functions, the governing equations related on this approach follow: 

 
( / ) ( / ); ( / ) ( / );

( ) ( / ); ( / ) ( / ) 0.
x z y z

y z y x y

u x H y u y H x

u H y H x H x H x

           

           
 (6) 

The stress-displacement relations are given by: 
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 (7) 

Moreover at Eq. (7) the boundary conditions should be summed: 

 0; 0yy yx yz y       (8) 

In according with [5], we see that the problem above defined can be uncoupled and 
therefore resolve the motion problem into two parts, namely the first one is plane strain, 
such that uz = 0, ux, uy  . The second one is the secondary wave motion where only  
uz  . 

From now on, we wish to study the interaction of elastic waves with discontinuities or 
boundaries of more complex shape than that of the half-space framework.  

Particularly, we focus the attention over the scattering of compression waves against 
absorbed obstacles [3, 5], as well as inclusion, in elastic half-space. The propagation and 
reflection of waves, generated by dynamical forcing over the external surface, against inner 
surfaces or discontinuity [4-6] has, also, great interest in seismology, structural foundations 
since the vibratory phenomenon represents a very important further load condition for 
global stability and strength [7-9]. 

Moreover this building framework picks up more general problems, for example voids, 
flaws or stress raise in half-space constituent materials. The approach adopted follows the 
stated assumptions and hypothesis , that is expansion of the wave fields in series.  

3. Shock waves 

The impact between two solid elements represents the simplified condition for the 
generation of shock waves. In the specific case of parallel impact the two surfaces enter in 
contact simultaneously and all the points of the two surfaces enter in contact at the same 
time.  
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The true profile of a shock wave is complex. In the following Figure 1, it is possible to 
observe the difference between the ideal and the true profile where, for the latter, it is clear 
the dependence form the characteristics of the material and the pressure applied at contact.  

An impulsive stress on contact has an initial, middle and final pressure value. Initially it’s a 
shock wave (discontinuity in compression); the mean reaction is characterized from a slow 
variation of pressure and the final from a dissolution which tends to the undisturbed state. 

 
Figure 1. (a) idealized and (b) generic realistic shock wave profile (from Meyers [10]). 

In a previous paper the authors has investigated the waves generation after the impact on a 
granular plate [9]. The study has been developed, initially from a microscopic point of view 
and subsequently on macroscale.  

The effects are strictly linked with material degradation associated with damage evolution. 
In accordance to [11] the shock waves can induce phase transitions in the solid, (Figure 2), 
then transitions form elastic to plastic response (in our case plasticization of the mixture 
binding component). 

 
Figure 2. Pressure distribution in a pulse propagating through a material undergoing a phase 
transformation and a transition from elastic to inelastic behaviour (from Meyers [10]). 
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On a theoretical point of view, we classify the problem as the propagation of a shock wave, 
where a uniform contact pressure is applied on a plane solid surface in an elastic semi space. 
Given the geometrical origin x = 0 and the beginning of the phenomenon at time t = 0, after a 
laps of time t the shock front divides the space in two regions, one undisturbed, the other 
compressed and accelerated. Therefore the flow equation is reduced to the jump condition: 

 
( )( )s o p s

s

v v v v
P

V
 

   (9) 

with vs the wave propagation speed, vo and vp are the speeds of the particles respectively 
behind and in front of the shock front, and, Vs is the specific volume of the medium.  

The clear result is the introduction of a pressure step which travels across the medium, with 
changes of shape which depend on the mechanical proprieties of the element.  

In the case of impact the contact time tends to zero, therefore ti = tp where ti is the impact 
time and tp is the plasticization time. In theory, the problem can be represented as two 
successive phases. 

First phase: transversal speed at the centre of the body remains constant. This phase is 
necessary to absorb the remaining kinetic energy in the body.  

Second phase: a concentrated plasticization begins which starts to expand from the core to 
the external part of the body. The time it takes is given by the expression:  

 2 / 6o ot v r M   (10) 

Where μ is the Lame’s material constant and the associated maximum permanent 
transversal displacement in the contact zone can be approximated as: 

 2 2
03 / 4 cp r p   (11) 

In regards to the mechanical proprieties of the medium subject to the impact actions in the 
case, the response of solids made of asphalt mixtures can be divided, accordingly to [12, 13] 
in three groups: elastic visco-elastic and visco-plastic. In the one-dimensional case we have: 

 1e
ii iiE T   (12) 

 ( )ve
ii iiE A T t   (13) 

 ( ) ( )vp
ii iiE B T f N t   (14) 

where f(N), A(T), B(T) are functions of the stress in the viscose phase. A, B, ,  and  are 
constants determined at constant temperature. 

In the multidimensional case the equations above become: 
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 [ ] [ ]·[ ]eE K T  (15) 

 [ ] [ ]·[ ]ve hE At H T   (16) 

where K is the deformability matrix, H K   and [ ]h
ijkT T T   

In regard to the visco-elastic part, it has to be specified that the critical points which arise in 
this phase with the load time can be resolved using the Perzyna theory [13]. For an 
associated visco-plastic flow we have: 

 [ ] · ( )· /vpE t F t     (17) 

where:  

-  is a fluidity parameter associated to the loading times and the number of loading 
cycles;  

- (F) is the viscose flow function;  
- F is the plasticity function F(T, k) with k the hardening parameter. 

Passing to the numerical implementation, in the case of reduced load intervals, an iterative 
procedure, as a Newton-Raphson, can be applied.  

 1[ ] [ ][ [ ]] [ ][ ] [ ]vpn n h n nA T K A E A t K T A E    (18) 

and, after the rightful developing, stress and strain in approximated as: 

 1[ ] [ ] [ ]n n nT T A T    (19) 

 1[ ] [ ] [ ]vp vp vpn nE E A E    (20) 

Therefore it follows the link between micro-scale effects and material behaviours at macro-
scale.  

So we focus the micromechanics of the damage processes because the nonlinear response of 
typical engineering materials is almost entirely dependent on the primary change in the 
concentration, distribution, orientation and defects in its structural composition.  

The relation between the continuum damage mechanics and the fracture mechanics is very 
complicated, in essence, a question of scale. The important role of scale can be clarified by an 
energetic point of view.  

In view of an approximated continuum theory with the physical foundation of 
micromechanical models, a promising strategy would consist of combining the best features 
of both models. In this approach we consider only the first layer of the pavement package 
because, at micro-scale, damage distribution at the edge of the body, where surface 
degradation is of importance, is expected to be significantly different from the damage 
distribution far from the edge in the body.  
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We follow the volume element theory RVE, it’s possible to represent a non-homogeneous 
solid with periodic microstructure. Particularly in the transition toward the micro-scale our 
RVE can be represented by more granular elements joint by means of an asphalt mixture, so 
considerations are applied on the contact area among two granular elements. In this manner 
the homogenization problems can be satisfied.  

Following Sneddon’s solution [14] type we model the physics of impact by means of a rigid 
frictionless asymmetric concentrated impact, with generic concave profile described by the 
function f(r). We find respectively, the z pressure distribution under the concentrated 
impact and the displacement on the surface. 

4. Shell structures and blast loading 

To reproduce a possible genuine model becomes fundamental to describe the single load 
conditions since blast action, fundamentally, can be decomposed in thermal and shock 
wave’s loads. Here we develop the theoretical assumptions in both cases just starting with 
some structural considerations about the thick shell behaviour.  

From a structural point of view the tunnel can be considered as well as a half thick-walled 
cylinder subject to internal and external pressures. So we consider a half cylinder of inner 
radius a and outer radius b and subject to an internal pressure pa and an external pressure pb. 
We choose, as the closest to real behaviour, the plane stresses condition so that the ends of 
the cylinder be free to expand. 

Assuming the z-axis as the revolution axis, the deformation becomes symmetrical respect to 
the z-axis. Consequently it’s convenient to use cylindrical coordinates r, , z. 

According to [16-18] the plane stresses conditions involve z   and rz   and the 
equilibrium conditions, without body forces become. 

 0r r

r r
 

 


  
 (21) 

while the deformation field E as the components in the form:  

 1 ; ;r r z
r r

u u u u
E E E

r r r z
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   
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
 

 (22) 

where the function u(r, , z) represents the displacements field over the shell.  

Introducing the Lame’s constitutive equations (with  and , respectively, Poisson’s and 
Young’s modulus) after some simple calculations we get the basic equations governing the 
thick-walled half-cylinder: 

2 2 2 2

2 2 2 2
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2 2 2 2

2 2 2 2 2
a b a bp a p b p pb a
b a r b a

 
 

   (23) 

Under these conditions, we recall either of the specific conditions of the internal and 
external pressure loads. In the first case (internal pressure) the above equations becomes: 
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 (24) 

From the equations above, a consideration can be drawn about the circumferential stress ( 
tensile stress), which is at its greatest on the inner surface and is always greater than pa. In 
the second case (external pressure) the general equations assume the form: 

 

2

2 2 2

2 2

2 2 2

1

1

b
r

b

p a
b a r

p b a
b a r

 
      

 
     







 (25) 

The stress paths, when no inner holes were present, are uniformly distributed in the 
cylinder. From now we will be able to describe the coupling actions over the thick-walled 
half-cylinder shell and for this we run recalling some basic thermo-elasticity assumption. 
There is a large literature over the question but we prefer to follow [18-20]. 

We focus the consistence of thermal stresses induced in thick-walled half-cylinder when 
the temperature field is symmetrical about the z-axis. In this case we suppose the 
temperature T as radius function only and independent from z then plane strain Ez = 0. 
With analogous considerations as above, the basic equations, for the coupled problem, can 
be written as. 
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If the temperature T is positive and if the external temperature is equal to zero then the 
radial stress is always compressive, like other stresses in the inner surface.  

After numerous disasters in the building and structures, the fire-structure question was 
developed for many researchers, which has reproduced a large and specific literature. For 
instance it is our opinion, referring at some as important in [16-19]. From now we will 
deepen the other coupled action namely the structural effects after the burst. According to 
[10] the interaction of a detonating explosive with a material in contact with it or in close 
proximity is extremely complex, since it evolves detonation waves, shock waves, expanding 
gases, and their interrelationships.  

The question was developed, principally, by military requirement which study has 
developed the computational apparatus, for instance the Gurney equation [25-26]. 

It’s our interest some basic assumption linked to the effective problem that requires us 
namely, only actions from shock waves. So, we affirm the following basic assumptions: 

a. A shock is a discontinuous surface and has no apparent thickness. 
b. The shear modulus is assumed to be zero and so it responds to the wave as a fluid, and 

the theory can be restricted to higher pressures. 
c. Body forces and heat conduction at the shock front are negligible. 
d. There is no elastic-plastic behaviour. 
e. Material do not undergo phase transformations. 

Now we will consider the dynamic behaviour of thick-wall cylindrical shell under internal 
pressure produced by shock wave.  

Let pc be the collapse pressure, then the shell is subject to a symmetrical internal pressure 
pulse, in the interval time 0  t  , while p = 0 when t  . Again we assume a perfectly rigid 
plastic material behaviour.  

Supposing the pressure load symmetric, then the yielding is controlled by force in the shell 
middle plane. So, let N be the generalized membrane forces, at the yielding point we have 
N = Nc (with Nc the fully plastic membrane forces). Neglecting the elastic effects, the 
dynamics response consist of two phases motion with N = N =Nc.  

For major clarify we consider, as the second phase, the time as   t  t* where t* is the 
response duration time. Let  be the transverse displacement of the shell middle plane and 
let v° be the spherically symmetric outwards impulsive velocity, we then find the radial 
displacement 

 2 / o
cN t r v t    (27) 

After some calculations we have the associated permanent radial displacement field over 
the shell. 

 / 4o
f crv N    (28) 
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5. Applications examples 

In the following, we will give two examples of finite element applications to dynamic 
analysis in particular, interaction problems of structures systems subject to explosion waves 
and impact loads are presented [9] [15]. 

5.1. Impact loads on flexible pavement 

In this example we assessed the effects of a heavy impact caused by aircraft landing gear 
wheels on a flexible airport pavement. 

Flexible pavements are usually idealized as closed systems consisting of several layers; so 
the surface, base, sub-base and sub-grade material were modelled using 3-D finite elements. 
While an elastic constitutive model was assumed for the granular layers and the base 
course, a time hardening creep model was incorporated to simulate the viscoelastic 
behaviour of the HMA surface layer 

The aircraft considered in the model was the Airbus 321 [26]. The most common way of 
applying wheel loads in a finite element analysis is to apply pressure load to a circular or 
rectangular equivalent contact area with uniform tyre pressure [27]. To investigate the 
impact simulation in exceptional condition, the dynamic parameters of an “hard” landing, 
that caused the broken of some gear components, were considered [28]. Starting from this, 
considering the damping effect of the gear system, it is possible to calculate the acceleration 
graph during the landing (Figure 3). 

 
Figure 3. Acceleration graph. 

As shown in Figure 3 the peak acceleration value, during the hard landing, is 1.99 m/s2. This 
value of acceleration was used in the finite element model to calculate the maximum wheel 
load. 

The finite element model has the following dimensions: 10 m in x and y directions and 2.5 m 
in the z- direction. The three-dimensional view of finite element model is shown in Figure 4. 
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Figure 4. Three-dimensional view of the finite element model. 

The degree of mesh refinement is the most important factor in estimating an accurate stress 
field in the pavement: the finest mesh is required near the loads to capture the stress and 
strain gradients. The mesh presented has 126245 nodes and 29900 quadratic hexahedral 
elements of type C3D20R (continuum 3-dimensional 20 node elements with reduced 
integration). Quadratic elements yield better solution than linear interpolation elements [29]. 

The loads (vertical and horizontal) were uniformly applied to the element, which was 
created to be the same size as the wheel imprint of an Airbus A321.  

In this example the surface was considered to be free from any discontinuities (with no 
cracks) or unevenness, and the interface between layers was considered to be fully bonded 
(with no gaps). 

The model was constrained at the bottom (encastre: U1 = U2 = U3 = UR1 = UR2 = UR3 = 0); 
X-Symm (U1 = UR2 = UR3 = 0) on the sides parallel to y-axis; and Y-Symm (U2 = UR1 = UR3 
= 0) on the sides parallel to x-axis. 

The results of the non-linear FE analysis are illustrated in the following figures. Figure 5 
shows the Mises stress distribution for the considered FE model at the landing aircraft 
impact instant and Figure 6 presents the results of pavement surface deflection along 
transversal direction.  

Finally, in the graph of Figure 7 are plotted the predicted transversal surface deflection 
profiles along the transverse center line. 

This example shows how finite element analysis of pavement structures, if validated, can be 
extremely useful, because it can be used directly to estimate pavement response parameters 
without resorting to potentially costly field experiments. 

If accurate correlations between the theoretically-calculated and the field-measured 
response parameters can be obtained, then the finite element model can be used to simulate 

RP 1

RP 2

XY
Z
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pavement response utilizing measurements from strain gages. In particular, the proposed 
model has clearly confirmed the need and importance of 3-Dimensional finite element 
analyses on flexible pavements to consider the behaviour of the structure under high stress. 

 
Figure 5. Mises stress at the instant of impact. 

 
Figure 6. Displacement contours at the instant of impact. 

 
Figure 7. Predicted deflection profiles (y-direction). 
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5.2. Confined explosions 

In the following application a 3-D simulation of tunnel structures under Blast loading is 
proposed. 

The Finite Element model was based on a single track railway tunnel system consisting of 
concrete tunnel tube with the section dimensions reported in Figure 8. The tunnel was about 
10 m below the ground surface. The model extended 150 m in the longitudinal direction of 
the tunnel, while the length and height of the model were of 26.8 m. The finite Element 
model was fixed at the base and roller boundaries were imposed to the four side. The 
modelled tunnel structure is surrounded by soil and this load represents the starting state of 
stress. Drucker-Prager elasto-plastic model was used to model the soil. For the 
characterization of the reinforced concrete of the tunnel structure it was considered a C50/60 
class concrete having thermal characteristics according with the indications of the Eurocode 
2 [30]. 

 
Figure 8. Rail tunnel section. 

A fundamental aspect in the study of fire resistance in underground structures is the 
definition beforehand of the fire scenario taken in the analysis, therefore choosing the best fit 
standard curve. A standard curve is the cellulose curve defined in several standards, e.g. 
ISO 834 [23]. Specific temperature curves have been developed in some countries to simulate 
hydrocarbon fires in tunnels. Examples of such curves are the RABT/ZTV Tunnel Curve in 
Germany [31] and the Rijkswaterstaat Tunnel Curve (RWS curve) in The Netherlands (based 

  

5.00
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on laboratory scale tunnel tests performed by TNO in 1979 [32]). In the considered model 
the HC curve was used to simulate the fire action. 

The blast overpressure was generated from an instantaneous release of 50 m3 LPG rail 
tanker at 326K. The pressure-time curve was assumed to be of triangular shape, the duration 
of which was obtained from CONWEB reflected pressure diagram [33]. To calculate the 
decay of blast overpressure during the longitudinal direction of the tunnel the Energy 
Concentration Factor (ECF) method was used [34].  

During the propagation of the blast wave over the first 75 m from the BLAVE to the tunnel 
opening, the blast overpressure falls from 1700 kPa (vapor pressure at 326 K) down to 
approximately 86 kPa. This decay is solely through the intense energy dissipation in the 
strong leading shock of the blast wave. 

The 3-Dimensional model is representative of a tunnel section 300 meters long. This model 
was implemented by quadratic tetrahedral type elements [31] obtaining 95003 elements and 
147528 nodes as shown in Figure 9.  

 
Figure 9. Meshed model. 

The analysis was carried out in two steps [35]. The first step obtained the initial stress 
state caused by soil load and fire and the second step analysed the dynamic response 
under blast loading. Consequently the following load conditions were considered in the 
FE analysis: 

1. from time t = 0 to time t = 120 min the tunnel was subjected to the surrounding soil load 
and to the fire thermal stress; 

2. at the instant t = 2 sec the structure was subjected to the blast over pressure. 

Therefore, on the base of this analysis, the distribution of the temperature inside of the 
structure is known. In Figure 10 the temperature distribution is showed. 

Subsequently, the mechanical behaviour of the models was analysed introducing also to 
thermal stress, the explosion load. Figure 11 shows the deformation and the Mises stress of 
tunnel section, from meddle, where explosion is localized, to the tunnel opening. 
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Figure 10. Temperature distribution (°C) t = 1800 sec. 

 
Figure 11. Mises stress (Pa) of the tunnel at the explosion instant. 

6. Conclusions 
The topics developed in this chapter belong to multi-physics problems and consequently 
represent a great computational weight on the results. Again, further complexities arise in 
the hypothesis of the mechanical process being dynamic.  

In the almost static case the strain, in any instant of time, is in a situation of almost 
equilibrium with the loads; instead in the dynamic case the stress state is variable in space, 
therefore there are portions of the solid under stress against others in almost absence of 
stress. In other words the stress travels inside the solid as a stress-wave and it becomes a 
fundamental parameter for the description of the behaviour of the material. The dynamic 
processes in materials involve different scientific disciplines and areas, as materials science, 
shock physics/chemistry, mechanics combustion, applied mathematics and large scale 
computation.  
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Certainly, in developing this approach we have had the opportunity to deepen analysis 
about strength of materials and structures, and damage and fracture at micro and 
macroscale. 

In the second section of the chapter, two numerical simulations relatively to one impact 
against air field pavements and one explosion in tunnel structures have been presented. 
Both simulations assume the problems as multi-field, and the results are quantitatively 
adequate.  
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1. Introduction 

The use of the finite element in engineering applications has grown rapidly in recent years. 
Finite element analysis (FEA) is based on numerical computation that calculates all 
parameters and boundaries given. Supported with powerful computer processors and 
continuous software development, the finite element method is rapidly advancing. The use 
of finite element analysis is not limited to the engineering field, as there are also medical and 
geospatial applications. The early development of the finite element can be traced back to 
the work of Courant [1], followed by the work of Martin [2], which applied the solutions for 
structural analyses at Boeing Company in the 1950s. Further work by Argyris, Clough, 
Turner, and Zienkiewicz developed the governing mathematical equation for the finite 
element method [3].  

The numerical simulation introduced in the 70s for the stress model on concrete as 
published by Hillerborg [4] is a clear example of the FEA concept. Huiskes et al. [5] also 
stated that the finite element has been used in a structural stress analysis of human bones for 
biomechanic applications. Zienkiewicz et al. [6] applied the finite element method to the 
linear and non-linear problems encountered during the analysis of a reactor vessel. 
Gallagher [7] studied brittle material design through use of the finite element method, 
which incorporated thermal and elastic analysis aspects of the overall design. Miller et al. [8] 
used the finite element method during the study of crack stability of a turbine blade and 
proposed a hypothesis based on material strength characteristics, plastic zone size/history, 
and residual plastic strains.  

In the mid 80s, Oritz et al. [9] proposed a method that aimed to enhance the performance of 
general classes of elements that undergo strain localization. An overview of the application 
of the finite element in machining from the 70-90s was well documented by Mackerle [10]. 
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The application of the method to localize fractures was studied by Broberg [11], and further 
work was continued by Borst et al. [12]. Nowadays, finite element analysis is widely used by 
the engineering field in fluid dynamic and electrical applications. 

In general, the finite element analysis is widely used in the pre-production manufacturing 
process to determine the most cost-effective decision based on the analysis. Finite element 
simulations allow comparison between different “designs.” Finite element analysis can 
simulate operational and environmental conditions and formulate modifications without 
creating a physical prototype. 

In order to adequately determine the root cause of material failure, two outcomes are required: 
the answer and an explanation. The failure of a mechanical component is usually associated 
with materials, the environment, a third party, or human error. An investigation through 
metallurgical failure analysis is usually conducted to reveal the root cause and the failure 
mechanism. Work by Griffith [13] on fracture mechanics created a breakthrough in the 
understanding of the material fracture mechanism. In certain cases, a conventional failure 
analysis approach is not enough to reveal the failure, and therefore, a more comprehensive 
analysis through the finite element is needed. Prawoto et al. [14] explained that the use of the 
finite element is an effective approach when the causes of failure are determined using 
qualitative metallographic and fractographic testing. The finite element requires an 
understanding of how a component works and will support the correct information and data. 
The quality of the data provided is a key element for the successful outcome of the simulation.  

2. The finite element in failure analysis 

The use of finite element analysis in mechanical applications has heavily increased in recent 
years. The continuous efforts to improve calculations and analyses so that models accurately 
incorporate actual conditions have been rewarded as a consequence of computer tool 
evolution. The finite element analysis has become an important tool for improving the design 
quality in numerous applications. The finite element analysis is a computer-based technique to 
solve problems using numerical solutions. The analysis includes a method based on creating a 
geometrical model of the structure that is divided into individual nodes or elements. 

Finite element modeling provides different insights into the engineering analysis that cannot 
be obtained with the classical failure analysis method. Classical commercial software such as 
ABAQUS® and ANSYS® has been widely used to analyze failures or defects and 
reconstruct possible root causes. The images and animation produced by the software help 
to give a better understanding by visualizing the root cause behind the failure event. 
Previously, the development of the finite element evolved slowly due to a lack of tools to 
solve mathematical equations, and therefore, the method remained dormant until the 
computer era.  

The early finite element software was commissioned by NASA in mid 1960s, which 
introduced NASTRAN® as an application that helped to design more efficient structures for 
vehicles that were developed by them [15]. The ANSYS® software, which was released in 
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1970, was run on a massive mainframe computer that was less powerful than the personal 
computers of today [16]. The early software was only capable of simulating the 2D beam 
model, but it eventually progressed towards the modern 3D solid model of today as 
computer hardware developed. 

The applications of finite element analysis in engineering failure analysis are in continuous 
evolution as more factors related to the failure event are taken into account. For example, in 
the case of turbine blades involved in jet engine failure, engineers should incorporate the 
thermal effect and load effect received by the blade in the simulation, not to mention other 
possibilities from foreign particles that could initiate the failure. Therefore, FEA calculations 
now incorporate a combination of multiple physical environments. Current research related 
to the application of the finite element in failure analysis has been published in peer-
reviewed journals, and can be seen in publications such as Engineering Failure Analysis 
Journal® and Failure Analysis and Prevention Journal®. 

In general, a finite element method consists of three phases: (1) pre-processing, where the 
analyst creates the finite element mesh and applies certain parameters or boundaries to the 
model, (2) solver/solution, where the program runs the governing mathematical equation 
that was created by the model, and (3) post-processing, where the result is evaluated and 
validated for further interpretation.  

Some limitations must be recognized in the finite element method. The ability to define and 
analyze the system and the model will determine the quality of the simulation results. The 
evaluations of any failure event need a comprehensive approach to reveal the root cause of 
the failure. FEA is a tool where multidisciplinary fields are combined to help find or support 
the solution with better accuracy for a final conclusion. Below are three case studies that 
illustrate how finite element analysis can be utilized in failure analysis. 

3. FEA in mechanical failure 

The use of FEA for mechanical failure has become a necessary tool that is easily obtained, as 
the commercial software is readily available for users. FEA is widely used in failure analysis 
assessment when analyzing and characterizing the quantitative and qualitative approaches 
used to determine the root cause of an event leading to a failure. The software is given 
historical background information related to the failure along with other boundary 
conditions. Below is an example of a mechanical failure analysis assessment that used finite 
element analysis software to verify the findings regarding the failure event. 

In the first case, the finite element method was used to analyze the stress distribution of a 
failed 28MW horizontal hydroturbine shaft [17]. The data corresponded to the fractography 
and metallographic observations. The finite element analysis was performed for normal 
conditions as well as the type of high load conditions that would be experienced during the 
start-up period.  

The shaft was constructed by the joining of a forged and cast part by slag welding. A crack 
was observed at the radius area of the casted part. The part was given an estimated 200,000 



 
Finite Element Analysis – Applications in Mechanical Engineering 

 

220 

hours of operating life, and failure was detected after 163,411 hours in service. A visual 
examination of the fracture surface showed a fatigue pattern with obvious ratchet marks. 
Further observation of the fracture surface showed visible distorted fatigue lines around 
numerous gas holes and areas of increased porosity. 

An original document indicated that the shaft was heat-treated to complete an austenization 
process. However, metallographic examination showed cast ferrite-pearlite with an 
undissolved dendrite structure, which might indicate that an improper heat treatment 
process occurred. In addition, a large non-metallic inclusion was also observed in the cast 
part. 

A linear FEA was used to determine the stress state of the turbine shaft and shaft flange. The 
commercial ANSYS® software was used for the finite element modeling. The model 
represents a discrete continuum by an 8-node finite element with three degree of freedom 
that comprises 49,430 nodes and 47,547 elements. All of the boundary conditions were 
incorporated into the model. 

A numerical calculation to determine the shaft flange stress states was performed for two 
characteristic load cases, where one load was taken from the manufacturer's documentation 
and the second load was the static load that occurs during start-up. Calculation of the finite 
element for both load conditions showed that the maximum stress was at the crack initiation 
site at the shaft flange.  

The data collected from the chemical composition test and mechanical test showed that the 
material did not comply with the minimum standard required. Therefore, the crack location 
where the failure occurred was more susceptible to stress. Finite element analysis showed a 
high distribution of stress at the failed area. The finite element analysis revealed that the 
obtained tensile stress value on the shaft flange transition radius due to the load in case 2 
was higher than recommended, and was characterized by the stress intensity factor at the 
crack tip being higher than the material threshold. 

It was concluded that corrosion fatigue was the cause of the shaft failure [16]. The root cause 
for this case was improper corrosion protection at the failed area and a lack of periodical 
inspection, both of which were necessary due to the high stress on the region. 

4. FEA in corrosion failure 

Karayan et al. [18] studied the failure of a seawater inlet pipe. The failure was first 
characterized by a small leak at approximately the 4-8 o’clock position. A schematic drawing 
of the inlet pipe showing the backing bar near the leak location is shown in Figure 1. This 
backing bar was installed on the welded surface. The visual examination of this failed pipe 
is shown in Figure 2. In order to find out the root cause of failure, a number of laboratory 
tests were performed. The results showed that the failure was caused by cavitation, as 
evident by the presence of a crater-like surface near the backing bar (Fig. 3). These localized 
craters seemed unusual since they were only noticed near the backing bar. An additional 
tool such as finite element analysis was used to determine why this was the case. A finite  
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Figure 1. Big and small leak near the backing bar at about 6 o’clock position viewed from the inner side 
of seawater inlet pipe. 

 
 
 

 
 

Figure 2. Big and small leak near the backing bar at about 6 o’clock position viewed from the inner side 
of seawater inlet pipe. 
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Figure 3. Surface morphologies of brown crater – like surface taken from 6 – 3 o’clock position. 

element analysis was executed based on the pipe dimension and actual fluid conditions 
such as velocity, pressure, temperature, and implicit parameters. Because there were no data 
for the initial height of the unwanted backing bar, the authors assumed that the initial 
height was the highest backing bar found on the specimen. Interestingly, the failure location 
predicted by the finite element analysis matched up with the actual evidence (Fig. 4). It 
precisely showed that the failure could be located around the backing bar where the eddy 
zone was formed in this area. This suggests that sometimes the results obtained from 
laboratory tests cannot explain why a failure occurs, although evidence indicates the 
existence of a certain problem. In this case, a finite element analysis is the only tool that can 
help a failure analyst find the root cause of failure. As can be seen from Figure 4, the leaks 
and crater-like surfaces found in the area near the backing bar were attributed to the 
formation of eddy zones in this area. The length of the eddy zone predicted that the area 
that might suffer from a flow-induced attack. 
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Figure 4. Finite element analysis of the inner pipe showing the orifice effect and the eddy zone near the 
backing bar correlated with the actual leaks on the inlet pipe.  

The last case is a trunkline that burst during service [19]. This incident produced a 
significant impact on the gas production of the company and also on the environment. The 
failure was characterized by a mesa-like attack and wall thinning at the 5-7 o’clock position 
on the inner surface. The location of failure is shown in Figure 5. A reddish brown corrosion 
product was noticed on the surface, but there with no indication of the occurrence of an H2S 
attack found in the material. This trunkline, carrying the gas with a total pressure of 905 psi, 
spanned across the jungle in the descending position. The analysis of the gas composition is 
listed in Table 1. The topography and characteristics of the soil in which the trunkline was 
located and also the material specification data is listed in Table 2. 
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Figure 5. The specimen sent to the laboratory for analysis is indicated by arrow 

 
Component Mole % 

H2 

O2 

N2 
CO2 
H2S 
C1 
C2 
C3 
iC4 
nC4 
iC5 
C5 
C6 
C7 
C8 
C9 
C10 
C11+ 

Hydrogen 
Oxygen 
Nitrogen 
Carbon Dioxide 
Hydrogen Sulfide 
Methane 
Ethane 
Propane 
Iso-Butane 
n-Butane 
Iso-Pentane 
n-Pentane 
Hexanes 
Heptanes 
Octanes 
Nonanes 
Decanes 
Undecanes plus 

0.0000 
0.0084 
3.6036 
1.9406 
0.0000 
82.7838 
6.7222 
3.0077 
0.6144 
0.6610 
0.2384 
0.1418 
0.1352 
0.0982 
0.0306 
0.0072 
0.0069 
0.0000 

 

Table 1. Result of gas analysis in trunkline 
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Item Description Result 

Property 

Q ± 3 MM 

WC - 

GOR - 

P (Psi) 750 

T (F) 140 

Fluid 
Composition 

H2S 0.00 

CO2 (%) 1.9406 

SRB content - 

Chloride (%) 0.7635 

Water (%) 0.0898 

Pipe  
Arrangement 

Laydown/buried/support w/ith 
trestle 

Laydown 

Seam position - 

Corrosion 
Form 

Uniform/localized/pitting/etc pitting/localized 

external/internal/both Internal 

On seam/not - 

On 6 o'clock/others 6 o'clock 

Environment 

Elevation Descending 

Any river/road crossing No 

Soil pH - 

Any trees/bushes Yes 

Document 
Work over on wells using the line No job in last one year 

WT inspection not yet 

Table 2. Fluid properties and failed trunkline condition. 

A visual examination showed that the burst area was located at the 6 o’clock position of the 
(a) downstream part and the (b) upstream part (Fig. 6). Some points on the inner surface of 
the downstream part at the 5-7 o’clock position showed surface degradation with wall 
thinning and pits (Fig. 7). Some points on the inner surface of the upstream part at the 5-7 
o’clock position also showed surface degradation with wall thinning and pits (Fig. 8). A 
uniform attack at the burst area from the 5-7 o’clock position is shown in Figure 9.  
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Figure 6. (a) Downstream part and (b) upstream part showing the burst located at 6 o’clock position. 

 

 

 

(a)

(b)
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Figure 7. Wall thinning and pits at 5 – 7 o’clock position of downstream part. 
 

 
Figure 8. Wall thinning and pits at 5 – 7 o’clock position of upstream part. 
 

 
Figure 9. Uniform attack at the burst area from 5-7 o’clock position. 
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The metallographic preparation and macroetching were performed on the perimeter of the 
trunkline, and the results showed that the trunkline was made of seamless pipe (Figs. 10 and 
11). The thinning area shown in Figure 9 was an ERW (electric resistance welding)-free area 
(Fig. 10). This information indicates that the failure could not be attributed to the ERW pipe 
issue.  

 

 
Figure 10. Results of macroetching showing the absence of ERW. 

 

 
Figure 11. Macrograph of 5-7 o’clock position showing the absence of ERW. 

The microstructure of the trunkline was taken from the cross-section, and the results are 
displayed in Figure 12. As can be seen, the trunkline is composed of ferrite (light phase) 
and pearlite (dark phase) with equiaxed grains, which is typical of seamless pipe. The 
chemical composition of the trunkline was tested using an optical emission spectrometer 
and the results (Table 3) show that this trunkline is composed of an API 5L X60 steel [20]. 
Due to the insufficient geometry of the trunkline, the mechanical property of the trunkline 
was only examined by hardness testing. In order to verify that the specification of this 
material was API 5L, the resultant hardness values were converted to tensile strength 
(Table 4). 
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Figure 12. Microstructure of trunkline showing a typical seamless microstructure with equiaxed grains. 
The dark phase is pearlite and the light one is ferrite. 

 
 

Material 
C

(%) 
Mn
(%) 

P
(%) 

S
(%) 

Ti 
(%) 

API 5L X60 PSL 1 [20] 
Failed Trunkline 

0.22 
0.165 

1.40 
0.594 

0.030 (max) < 
0.003 

0.030 (max) 
< 0.003 

0.040 
< 0.002 

Table 3. Chemical composition of trunkline 

 
 

Material Average HRB Approxmate UTS Based on Conversion (MPa) 

Failed trunkline 
API 5L X60 [20] 

82 
- 

524 
517 (min) 

Table 4. Converted tensile strength in comparison with API 5LX60 specification. 

The finite element analysis was executed around the overfill, and the results (Fig. 13) 
showed that the area at which the pipe burst had a dead or eddy zone due to the excessive 
overfill (Figs. 14 and 15). Because there was no information about the initial overfill height, 
we assumed an overfill height of 1 cm for the finite element simulation. This selection was 
based on the fact that there was one point at the remaining overfill that had a height of 1 cm. 
The other areas were mostly degraded, with heights of less than 0.5 cm. Severe corrosion 
was noticed on every peak of overfill. 
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Figure 13. Finite element analysis showing the eddy zone due to overfill in comparison with the actual 
failed area of pipe. 

As can be seen in Table 1, the only corrosive gas in the fluids flowing in this failed trunkline 
was CO2. Carbon dioxide systems are one of the most common environments in the oil and 
gas field industry where corrosion occurs. In a relatively slow reaction, carbon dioxide 
forms a weak acid known as carbonic acid (H2CO3) in water, but the corrosion rate of CO2 is 
greater than that of carbonic acid. Cathodic depolarization may occur, and other attack 
mechanisms may also occur. The presence of salts is relatively unimportant in sweet (CO2) 
service [21], and thus, the presence of chloride in this system (0.7635%) did not significantly 
contribute to the failure.  
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Figure 14. The inner side of circle area in Fig. 11 showing an excessive overfill (arrow) in the failed pipe 
at 12 o’clock position. 

 

 
Figure 15. An excessive overfill and severe surface degradation beside overfill at 6 o’clock position. 

The sweet environment of this system with a CO2 partial pressure of 17.56 psig may 
influence the presence of corrosion. The relationship between corrosion tendency and CO2 
partial pressure in the sweet environment with pH 7 or less has been reported elsewhere 
[22]. When the CO2 partial pressure is less than 7 psig, the system is non-corrosive. When it 
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is somewhere between 7-30 psig, corrosion in the system may be present. Lastly, when it is 
higher than 30 psig, the system is corrosive [22]. Temperature and flow regime are closely 
linked because CO2 corrosion is dynamic and very sensitive to electrochemical and physical 
imbalances (especially fluctuating pressure, temperature, and volume). Steady-state (P,T,V,) 
conditions tend to promote protective film compaction, and therefore, passivation and low 
corrosion rates. Lower temperatures <120°F (approximately 50°C) tend to promote patchy 
corrosion with softer multi-layered iron carbonate (siderite) scales that provide some barrier 
protection up to 140-160°F (60-70°C). Above these temperatures, damaging localized 
corrosion is observed as films lose stability and spall off, giving rise to galvanic mesa attack 
[23]. The failed pipe we studied with an operating temperature of 140°F might have formed 
a protective film. However, the phenomenon of film removal and its effect on the failure of 
this trunkline was not evident in our laboratory test. Our finite element analysis in the failed 
area in Figure 13 shows the unstable and chaotic flow in the failed area (called the dead or 
eddy zone). As illustrated, the eddy zone was triggered by the excessive overfill. This 
suggests that the pipe surface in this eddy area was severely attacked by flow. The presence 
of a passive carbonate layer could not protect the surface from this type of flow-induced 
attack that led to a mesa attack.  

5. Conclusions 
The three case studies discussed in this chapter have clearly shown us that finite element 
analysis (FEA) is an excellent and powerful tool that can be employed in failure analysis. 
Finite element analysis provides a failure analyst with more quantitative and qualitative 
information about the causes of failure. Although visual examinations and laboratory tests 
may not be able to determine a failure mechanism, the results of finite element analysis will 
support all data obtained from these tests. As long as a competent analyst running the finite 
element analysis is given sufficient data and has good knowledge of the system under 
study, the results of FEA will be reliable, although they should always be validated with 
experimental or real condition information.  
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1. Introduction 
Technological progress creates increasingly arduous conditions for rolling mechanisms. 
Advances in many fields including gas turbine design, aeronautics, space and atomic power, 
involve extreme operating speeds, load, temperatures, environments which increases power 
and load on machinery and demand high strength to weight ratio of the rolling element 
bearings. Also bearing stiffness is an important parameter in the designing. Bearing design 
calculations require a good understanding of the Hertzian contact stress due to which high 
stress concentration is produced which greatly influence the fatigue life and dominate the 
upper speed limits as in the case of solid rolling elements. Since being originally introduced, 
cylindrical rolling element bearings have been significantly improved, in terms of their 
performance and working life. A major objective has been to decrease the Hertz contact 
stresses at the roller–raceway interfaces, because these are the most heavily stressed areas in 
a bearing. It has been shown that bearing life is inversely proportional to the stress raised to 
the ninth power (even higher). Whereas making the rollers hollow which are flexible 
enough reduces stress concentration and finally increase the fatigue life of bearing.  

Investigators have proposed that under large normal loads a hollow element with a 
sufficiently thin wall thickness will deflect appreciably more than a solid element of the 
same size. An improvement in load distribution and thus load capacity may be realized, as 
well as contact stress is also reduced considerably by using a bearing with hollow rollers. 
Since for hollow roller bearing no method is available for the calculation of hollowness, 
contact stresses and deformation. The contact stresses in hollow members are often 
calculated by using the same equations and procedures as for solid specimens. This 
approach seems to be incorrect.  
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Initially in the present work author has carried out sufficient literature review (Somasundar 
& Krishnamurthy, 1984; Harris & Aaronson, 1967; Bamberger, Parker & Dietrich, 1976; 
Bhateja & Hahn, 1980; Murthy & Rao, 1983; Hong & Jianjun, 1998; Zhao, 1998; Yangang, Raj 
& Qingyu, 2004; Darji & Vakharia, 2008) and market survey to understand the practical 
application of hollow cylindrical roller bearing and its advantages in comparison with solid 
roller bearing. It is concluded that bearing manufacturer are production these type of 
bearing as per the requirement, but no standard formula or catalogue is available through 
which user can directly select hollow cylindrical roller bearing. Thus no standard formula 
(method) is available to find the optimum hollowness for the given loading condition and 
dimensions of bearing. Hollowness of the roller bearing is mainly dependent of applied 
load, dimensions of roller and endurance limit of the material used. Calculation of exact 
contact pressure for the hollow roller requires a finite element approach, and this has not 
been carried out yet. Present work is aimed to identify optimum hollowness irrespective of 
the geometry of the bearing and applied load.  

To meet the requirement, in the first part of the present work contact analysis has been 
carried out for contact between roller and flat. Dimensions of the rollers are calculated using 
equation of equivalent diameter corresponding to the five different cylindrical roller bearing 
i. e. 2206, 2210, 2215, 2220 and 2224 to get the large data range. Value of applied load is 
taken from minimum to maximum. Finite element analysis is carried out for the same roller-
flat contact and results are compared with analytical solution given by Hertz. This step is 
required to check the feasibility of FE procedure. In the second part of the work FE analysis 
has been carried out for the same applied load and material for all five cases, only the 
change is rollers are taken hollow. Roller hollowness is ranging from 10% to the hollowness 
for which bending stress at the inner bore should not exceed endurance limit of the material 
is taken for the consideration. Flexural fatigue failures occurred in hollow roller when the 
maximum bending stress at the bore cross the limit of endurance limit of the material. The 
fatigue cracks always began in the bore of the hollow roller. Those that propagated to the 
roller surface resulted in surface cracks and spallig and finally it fails the bearing. Around 
seventy FE analysis are done to generate the large data range. Finally graphical solution has 
been proposed to identify optimum hollowness irrespective of geometry of bearing and 
material properties. 

2. Analytical study of solid cylindrical roller bearings 
In the present work five different cylindrical roller bearing of NU 22 series are selected. First 
of all load distribution (Fig. 1) is calculated by applying load equal to static load carrying 
capacity of the bearing and the values of contact pressure, deflection, contact width and von 
Mises stress induced in the roller-race interface are determined (SKF General Catalogue, 
1989; Design Data, 1994;  Harris, 2001; Shigley, 1983; Nortron, 2010; I. S. 9202,  2001; Harris & 
Kotzalas, 2007; Horng, Ju & Cha, 2000; Demirhan & Kanber, 2008; Kania, 2006). Taking 
modulus of elasticity E = 201330 N/mm2 and Poission ratio v = 0.277 for the bearing material 
AISI 52100 steel (Guo & Liu, 2002). These five cylindrical roller bearings are selected in such 
a way that the size of roller should be in step of 5 mm approximately. So we can get the 
wide data range of load distribution for further analysis. Considering this point in the 
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present work 2206, 2210, 2215, 2220 and 2224 bearings are selected for analytical analysis. 
Contact behavior of all these bearing is studied using Hertz theory. 

 
Figure 1. Load distribution in roller bearing 

Before executing the FE analysis for cylindrical roller bearing to understand the contact 
behavior, it is possible to execute the same contact behavior for roller-flat interaction in place 
of roller-race as shown in Fig. 2. It is very easy to check the contact behavior of roller and flat. 
To check the contact behavior of roller and flat, if we will take the same diameter of roller 
which is used in the corresponding roller bearing then contact width will be changed. So 
comparison of contact behavior of roller and flat with roller-race as in case of bearing is not 
possible. Using the equation for equivalent diameter in the present work roller diameter is 
identified in such a way that for the same loading condition contact width of roller and flat 
interaction will remain same as the interaction of roller with race in bearing. These equivalent 
diameter of roller is designated by ‘Roller 1’ for NU 2206 bearing, ‘Roller 2’ for NU 2210 
bearing, ‘Roller 3’ for NU 2215 bearing, ‘Roller 4’ for NU 2220 bearing and ‘Roller 5’ for NU 
2224 bearing. Contact interaction between roller and flat plate is shown in Fig. 1, which is a part 
of the contact between inner-race and roller in the cylindrical roller bearing as described. This 
contact interaction is studied in detail by analytically using Hertz theory in the present work.  

  
Figure 2. Schematic of contact profile of roller on flat race 
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Table 1 shows the value of all these analytical results corresponding to roller-flat contact. 

 
Roller 
position 

Load (Q) 
N 
 

Contact 
width 
(b)mm 

Contact 
pressure (pmax) 
N/mm2 

von Mises 
stress (σVM) 
N/mm2 

Deformation 
(δ) mm 

0 5414.28 0.1321 2175.58 970.31 0.01206 
1 & 2 4730.5 0.1235 2033.57 906.97 0.01068 
3 & 4 2890.5 0.0965 1589.61 708.97 0.00685 
5 & 6 517.68 0.0408 672.72 300.03 0.00146 

Table 1. Analytical results for 2206 bearing : Equivalent diameter – 6.62 mm (Roller 1) 

 
Roller  
Position 

Load  
(Q) N 

Contact 
width (b) 
mm 

Contact 
pressure (pmax) 
N/mm2 

von Mises stress 
(σVM) N/mm2 

Deformation 
(δ) mm 

0 10397.88 0.1929 2451.83 1093.51 0.01917 
1 & 2 9404.92 0.1835 2331.82 1039.99 0.01752 
3 & 4 6656.75 0.1544 1961.77 874.95 0.01283 
5 & 6 2823.74 0.1005 1277.7 569.86 0.00593 

Table 2. Analytical results for 2210 bearing : Equivalent diameter – 8.58 mm (Roller 2) 

 
Roller 
position 

Load (Q) N Contact 
width (b) 
mm 

Contact 
pressure 
(pmax) N/mm2 

von Mises 
stress (σVM) 
N/mm2 

Deformation 
(δ) mm 

0 21620.59 0.2713 2307.3 1029.05 0.02581 
1 & 2 19801.61 0.2596 2208.11 984.81 0.02385 
3 & 4 14716.21 0.2238 1903.56 848.99 0.01826 
5 & 6 7444.23 0.1592 1353.88 603.83 0.00989 

Table 3. Analytical results for 2215 bearing : Equivalent diameter – 12.82 mm (Roller 3) 

 
Roller 
position 

Load (Q) 
N 

Contact 
width (b) 
mm 

Contact 
pressure (pmax) 
N/mm2 

von Mises 
stress (σVM) 
N/mm2 

Deformation 
(δ) mm 

0 50656.34 0.4112 2615.63 1166.57 0.04333 
1 & 2 45818.86 0.3911 2487.6 1109.47 0.03959 
3 & 4 32430.3 0.329 2092.83 933.4 0.02901 
5 & 6 13756.7 0.2143 1363.06 607.93 0.01341 

Table 4. Analytical results for 2220 bearing : Equivalent diameter – 17.14 mm (Roller 4) 
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Roller 
position 

Load (Q) N Contact 
width (b) 
mm

Contact 
pressure (pmax) 
N/mm2

von Mises 
stress (σVM) 
N/mm2

Deformation 
(δ) mm 

0 73318.39 0.4946 2622.82 1169.78 0.05224 
1 & 2 66316.76 0.4704 2494.44 1112.52 0.04773 
3 & 4 46938.59 0.3957 2098.59 935.97 0.03497 
5 & 6 19911.01 0.2577 1366.81 609.6 0.01616 

Table 5. Analytical results for 2224 bearing : Equivalent diameter – 20.56 mm (Roller 5) 

The induced von Mises stress in the cylinder/roller is less then the yield strength 1410.17 
N/mm2 of roller material AISI 52100 steel (Guo and Liu, 2002). 

3. FE analysis of solid cylinder and flat contact 

3.1. Existing FE models 

Since the first mathematical treatment of the contact problem of ideally smooth elastic 
solids, presented by Hertz in 1882, significant progress has been made in the field of contact 
mechanics. In particular, the deformation characteristics of semi-infinite elastic media 
subjected to concentrated and distributed surface traction have been elucidated, and 
analytical solutions for the contact pressure distributions and subsurface stress fields have 
been obtained for elastic bodies of different shapes and various interfacial friction conditions 
(Timoshenko & Godier, 1970). The results of these studies have been invaluable in the 
design of durable mechanical components, such as rolling element bearings (Komvopoulos 
& Choi, 1992). Existing FE Models like GW Model (Greenwood & Williamson, 1966), KE 
Model (Kogut & Etsion, 2002) and JG Model (Jackson & Green, 2005) are studied and finite 
element analysis for the present case is carried out.  

3.2. Finite element analysis details 

3.2.1. Model description 

In order to validate the relationship of load vs deflection, load vs contact width etc., an FE 
model of an un-profiled roller contacting a flat plate was set up. A sketch of the problem is 
presented in Fig. 3.  

 
Figure 3. Sketch of roller-plat contact model 
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A commercial package ANSYS 9.0 was used to solve the non linear contact problem. 
Initially for Roller 1, first of all three dimensional axis symmetric model was developed to 
form the single asperity contact between half cylinder and flat plate as shown in Fig. 6. For 
bearing 2206 taking equivalent diameter of roller as 6.62 mm and length 12mm. Dimensions 
of flat plat are taken as 12 x 8 x 2 mm3. The circular surface of cylinder and contact flat 
surface of plate was discretized by SOLID 185 elements. SOLID185 is used for the 3-D 
modeling of solid structures. It is defined by eight nodes having three degrees of freedom at 
each node: translations in the nodal x, y, and z directions see Fig. 4. The element has 
plasticity, hyperelasticity, stress stiffening, creep, large deflection, and large strain 
capabilities. It also has mixed formulation capability for simulating deformations of nearly 
incompressible elastoplastic materials, and fully incompressible hyperelastic materials. 

 
Figure 4. SOLID 185 geometry 

3.2.2. Mesh convergence 

A converged solution is one that is nearly independent of meshing errors. An extremely 
coarse mesh would give a very approximate solution, which is far from reality. As the mesh 
is refined by reducing the size of the elements, the solution slowly approaches an exact 
solution. It should be noted that, in theory, the solution will not be exact until the mesh size 
is zero, which is obviously impossible. However, it is possible to fix a tolerance to the 
solution error and this can be achieved by solving the problem on several meshes. In order 
to ensure that the solution obtained is as close as possible to reality, solutions should be 
obtained from several meshes starting with a very coarse mesh and finishing with a very 
fine mesh. Once these solutions are available, many key quantities can be compared and 
plotted against mesh densities (or number of points) as shown in Fig. 5.  

In order to investigate the convergence of the solutions, all models have been solved with 
increasing numbers of elements. The elements around the roller contact region are 
subdivided into number of elements as shown in Fig. 7. Although the stresses and 
displacements at different regions are investigated in this work the convergence check has 
been made for only point A as shown in Fig. 7 It is a common point of contact of roller and 
flat plate where induced von Mises stress should be investigated. The von Mises stress (σVM) 
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converged with coarse to fine meshes as shown in Fig. 5. The number of elements and nodes 
of models will increase as size of model will increase. 

 
Figure 5. Von Mises stress vs number of nodes 

It is very clear from the Fig. 5 that for the last three points value of von Mises stress is 
approximately same and its value are 242.09 N/mm2, 259.94 N/mm2 and 263.52 N/mm2 for 
the corresponding values of 0.08, 0.05 and 0.03 element edge length.  

 
Figure 6. Finite Element Model 

 
Figure 7. Densely meshed regions of the contact model 
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The region of most interest is adjacent to the contact interface and has the greatest 
concentration of elements for lower interferences. Away from the contact region, the mesh 
becomes coarser to minimize the computational efforts. In the present all FE models in 
contact region element edge length is taken as 0.08 and in other area it is taken as 0.5, the 
details of which is shown in Fig 8. The total numbers of elements generated are 14120 and 
nodes generated are 16977 for this model. 

3.2.3. Contact model 

In order to create contact models in ANSYS, a contact pair of elements must be created a 
contact element and a target element. ANSYS has general guidelines as to what line, surface, 
or volume these elements should be applied. Perhaps the most critical feature is the mesh 
size. For example, a large target element size and very fine contact element will not work. 
The sizes of the contact and target elements should be fairly close to one another. It is 
possible to get a solution to converge, but the results will most likely be incorrect. That is 
why there is a densely meshed region in both the bottom part of the half-cylinder and on the 
surface of the block shown in Fig. 8. 

 
Figure 8. Contact and target elements 

3.2.4. Boundary condition and application of pressure  

The boundary conditions are presented in Fig. 9. The nodes on the bottom surface of the flat 
plat all degree of freedoms are restricted and rigidly constrained from translating in the x, y 
and z direction. Where as on top surface of half cylinder uniform pressure of 68.16 N/mm2 is 
applied which is related with  Qmax (5414.28 N) for bearing no. 2206 

3.2.5. Solutions   

The solutions have been carried out by means of a PC. The hardware configuration consists or 
an Intel Pentium IV 2.53 GHz CPU with 1 GB of RAM. The models were solved in round 25 
minutes to 7 hours. All models have been solved as 3D static with Newton Raphson option. 
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Figure 9. Applied pressure and boundary condition 

3.2.6. Evaluation of the finite element model 

To examine the appropriateness of the finite element mesh and modeling assumptions, such 
as the dimensions and fineness of the mesh and the imposed boundary conditions, finite 
element results for an elastic half-space indented by a rigid cylindrical asperity were 
compared with analytical results for line contacts. The FE model was first verified by 
comparing its output with the analytical results of the Hertz solution in the elastic regime. 
The verification included the contact pressure, contact stresses, deformation and contact 
width. For the evaluation of Finite Element Model initially von Mises stress criteria is taken 
for the consideration because it is the final output of analytical study as discussed in section 
2. Also it is an important stress which should remain within limit with respect to yield stress 
of the material. Figure 10 shows the contour plot of von Mises stress for the applied load of 
5414.28 N. As it is clear from the figure that at contact zone induced stress is higher which is 
marked by red colour. Figure 11 shows the detail view of contact zone with node numbers. 
Value of von Mises stress is to be identifying for the node no 5258 which is on contact 
surfaces and it is 1031.1 N/mm2. Whereas analytical result gives 970.31 N/mm2 (Table 1). 
Thus the von Mises stress of FE model differs from the Hertz solution by 5.8% which is 
acceptable for the present analysis. The small differences between analytical and FEA 
solutions near the contact edge may be attributed to the fineness of the mesh. The favorable 
comparison of the results illustrates the suitability of the finite element model for the 
present analysis involving only global variables, such as von Mises stress, contact pressure, 
contact width and deformation. 

Figure 12 shows the contour plot for shear stress distribution. It is clear from the FE analysis 
that value of induced shear stress is 457.88 N/mm2 and analytical result gives 485.16 N/mm2 
with the percentage error of 5.6 % only.  
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Figure 10. von Mises stress distribution over solid cylinder-flat 

 
Figure 11. Detail of contact zone for von Mises stress distribution 

 
Figure 12. Contour plots for shear stress 
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Now using similar contact model and boundary conditions FE analysis has been carried out 
for all five rollers. Applied loads are taken as per the calculated load distribution among the 
rollers. Table 6 shows the validation of meshing scheme employed by comparing the 
analytical results with FEA. 

Figure 13 to 16 shows the graphical comparison of Table 6. Four important parameters von 
Mises stress, Contact Pressure, Deformation and Contact Width are plotted for different 
applied load.  
 

Load (N) Von Mises stress, 
σVM (N/mm2) 

Contact width, b 
(mm) 

Contact pressure, 
p (N/mm2) 

Deformation, δ 
(mm) 

Analytical FEA Analytical FEA Analytical FEA Analytical FEA 
Roller 1 
5414.28 970.31 1031.1 0.1321 0.1412 2175.58 2034.5 0.01206 0.01288 
4730.5 906.97 958.92 0.1235 0.1322 2033.57 1898.2 0.01068 0.01148 
2890.5 708.97 719.39 0.0965 0.1066 1589.61 1437.9 0.00685 0.00742 
517.68 300.03 242.09 0.0408 0.0467 672.72 587.2 0.00146 0.00184 
Roller 2 
10397.88 1093.51 1083.7 0.1929 0.2097 2451.83 2255.4 0.01917 0.02028 
9404.92 1039.99 1018.9 0.1835 0.2003 2331.82 2136 0.01752 0.0186 
6656.75 874.95 840.21 0.1544 0.1726 1961.77 1754.5 0.01283 0.01376 
2823.74 569.86 519.65 0.1005 0.1218 1277.7 1053.9 0.00593 0.006469 
Roller 3 
21620.59 1029.05 1110 0.2713 0.2991 2307.3 2092.5 0.02581 0.02643 
19801.61 984.81 1050.2 0.2596 0.2877 2208.11 1992.4 0.02385 0.02451 
14716.21 848.99 914.4 0.2238 0.2529 1903.56 1684.6 0.01826 0.01899 
7444.23 603.83 616.54 0.1592 0.1879 1353.88 1146.5 0.00989 0.01057 
Roller 4 
50656.34 1166.57 1245.6 0.4112 0.4659 2615.63 2308.2 0.04333 0.04357 
45818.86 1109.47 1176.8 0.3911 0.4466 2487.6 2177.8 0.03959 0.04 
32430.3 933.4 957.3 0.329 0.3860 2092.83 1783.4 0.02901 0.02989 
13756.7 607.93 592.31 0.2143 0.2723 1363.06 1072.4 0.01341 0.01442 
Roller 5 
73318.39 1169.78 1237.3 0.4946 0.5677 2622.82 2285 0.05224 0.05235 
66316.76 1112.52 1174.7 0.4704 0.5442 2494.44 2155.9 0.04773 0.04811 
46938.59 935.97 963.4 0.3957 0.4706 2098.59 1764.6 0.03497 0.03604 
19911.01 609.6 582.93 0.2577 0.3306 1366.81 1065.4 0.01616 0.01758 

Table 6. Validation of meshing scheme employed 
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Figure 13. von Mises stress vs Applied load 

 
Figure 14. Contact Pressure vs Applied load 

 
Figure 15. Deformation vs Applied load 

 
Figure 16. Contact Width vs Applied load 
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3.2.7. Summary of FE analysis  

The finite element method was used to analyze the contact mechanics aspects of nominally 
flat single-asperity surfaces and to identify the effect of important parameters like von Mises 
stress, contact pressure, contact width and deformation for the given load. On the basis of 
the presented results, the following major conclusions can be drawn. 

The smaller error in the FE model is attributed to overall balance (static equilibrium) 
enforced by the FEM package. The smaller differences between analytical and FEA solutions 
near the contact edge may be attributed to the fineness of the mesh. 

On the basis of the results discussed, it may be concluded that the finite element 
configuration shown in Fig. 10 and the invoked modeling approximations are acceptable for 
the purpose of the present analysis.  

Figure 14 to 17 shows that the agreement between analytical and finite element results from 
different rollers and various load is appreciably good. The maximum disagreement between 
the FEA value and analytical values occurs at the lowest applied load. The accord between 
the FEA and analytical results gets progressively better as higher applied load. Thus smaller 
the interference the smaller number of contact elements are in effect, leading to a large error 
and visa versa.  

4. Finite element analysis for hollow roller and flat contact 

4.1. Finite element model 

Different hollowness percentage ranging from 10% to 80% (in step of 10%) has been 
investigated for Roller 1 of diameter 6.62 mm which is equivalent of 8 mm diameter roller 
co-relate with bearing 2206. Figure 17 shows the finite element model for 40 % hollowness. 
Same surfaces as taken in the contact model of solid roller and flat i.e. outer surface of roller 
and top surface of flat plate are selected for contact element and target element respectively.  

 
Figure 17. Finite element model for 40% Hollowness 
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4.2. Meshing 

Now in this case also for the contact surface element edge length is taken as 0.08. Also as 
discussed by Murthy & Rao (1983) that, in addition to the contact stresses at the outer 
contact zone, the hollow specimens are subjected to tangential stresses (bending stress) at 
inner surface. Thus for the inner surface element edge length should be high and is taken as 
0.08 as shown in Fig. 18. For other remaining area it is taken as 0.5. 

 
Figure 18. Densely meshed regions of the contact model of hollow roller and flat 

Same boundary condition and pressure is applied as discussed in section 3.2.4. For each 
hollowness 10% to 80%, FE model is developed as shown in Fig. 19, maximum applied load 
5414.28 N is taken and results are observed. 

5. Results and discussion 

Due to thin section very less material is available to resist the force so von Mises stress is 
increase after 60% hollowness. Also at this stage plastic deformation will take place and 
failure will occur due to permanent deformation, which is not desirable and should be 
avoided. 

An added criterion for evaluation in a bearing with hollow rollers is the roller bending 
stress. To evaluate the life integrals, the value of the fatigue limit stress must be known for 
the bearing component material. This can be determined by endurance testing of bearings 
or selected components. Performance analyses were conducted, using the von Mises stress 
as the fatigue failure-initiating criterion. Based on this subsequent study fatigue limit 
stress for bearing material AISI 52100 is 684 N/mm2 (Harris and Kotzalas, 2007). From 
Table 7 it is very clear that bending stress is continuously increase from 377.07 N/mm2 to 
1721.4 N/mm2 as hollowness increase from 10% to 80% respectively. But the practical limit 
of this stress is 684 N/mm2. So the hollowness should be restricted upto 52% which is clear 
from Fig. 20. 
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Figure 19. von Mises stress plots for hollow roller 

 

Hollowness 
% 

Contact 
pressure 
(N/mm2) 

von Mises 
stress 
(N/mm2) 

Bending 
stress 
(N/mm2) 

Deformation 
(mm) 

10 1901 952.92 377.07 0.01253 
20 1812.3 895.99 422.55 0.01264 
30 1679.6 843.84 463.1 0.01345 
40 1536.3 785.46 539.91 0.01517 
50 1391.9 741.49 650.03 0.01885 
60 1247.1 704.71 822.71 0.02663 
70 1093.3 832.79 1123.8 0.04516 
80 897.31 1379.1 1721.4 0.10102 

Table 7. Values of parameters for different hollowness for Roller 1 

 
Figure 20. Bending stress vs Hollowness for Roller 1 
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Thus for the present case of Roller 1, for the applied load of 5414.28 N the % hollowness of 
the hollow roller should not exceed 52%, otherwise induced stress at the bore of the roller 
will increase beyond the endurance limit and cause fatigue failure of roller. 

Great care must be given to the smooth finishing of the inside surface of a hollow roller 
during manufacturing as the stress raisers that offer due to poorly finished inside surface 
will reduce the allowable roller hollowness ratios still further than indicated by Fig. 20.  

 
Figure 21. Contour plot for maximum shear stress for hollow roller 

Figure 21 shows the contour plot of maximum shear stress for 52% hollowness. The induced 
shear stress is 273.68 N/mm2 which is approximately half than the shear stress induced in 
solid roller for the same load of 5414.28 N. Thus reduction in shear stress gives 
improvement in fatigue life of bearing. 

Figure 22 to 25 shows the effect of hollowness on different parameters. 

 
Figure 22. Effect of hollowness on the deformation for same applied load 
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Figure 23. Deformation vs Hollowness 

 
Figure 24. Mises stress vs Hollowness 

 
Figure 25. Contact pressure vs Hollowness 
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is a control parameter used to optimize the bearing design. In the present case of Roller 1, 
load is applied in such a way that induced bending stress at inner bore should cross 
endurance limit of the material i.e. 684 N/mm2 for each hollowness. Result of FE analysis is 
shown in Fig. 26. The roller hollowness values from 10% to 80% have been analyze by Finite 
Element as discuss above for Roller 1 and the roller load, deflection and stress curves of Fig. 
27 have been developed. The dotted line across these curves show the points of constant 
maximum roller bore stress for values of 684 N/mm2. 

 
Figure 26. Bending stress crosses the endurance limit for different hollowness 

 
Figure 27. Relationship between the roller hollowness, Deflection and bore stress for 6.62 mm diameter 
roller 
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bearing design, which is indicated in Table 8.  

Figure 27 gives the best solution to find the optimum hollowness for verities of load. But this 
is not the final solution, because solution given in Fig. 27 is only applicable for Roller 1 i.e. 
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identified. Thus similar analysis can also be carried out for remaining four rollers to find the 
optimum hollowness and results are given in Table 9. For each roller these analyses have 
been carried out upto the hollowness where induced bending stress should just cross the 
endurance limit.  
 

% Hollowness 
Max. Applied 

Load (N) 
10 9850 
20 8800 
30 8000 
40 6900 
50 5700 
60 4500 
70 3300 
80 2520 

Table 8. Maximum applied load for different hollowness for Roller 1 

 

Roller no 
Maximum 
Load (Qmax) N 

% Hollow-
ness 

Contact 
pressure 
(N/mm2) 

von Mises 
stress 
(N/mm2) 

Bending 
stress 
(N/mm2) 

Deformation 
(mm) 

Roller 2 10397.88 

10 2153.5 1067.8 500.59 0.0195 

20 1984.2 1045.7 548.37 0.02 

30 1812.5 969.11 599.86 0.02149 

40 1652.5 900.87 693.55 0.02461 

Roller 3 21620.59 

10 1917.9 975.09 468.32 0.026 

20 1769.9 909.63 491.53 0.02671 

30 1629.6 855.49 538.21 0.02871 

40 1484 818.1 619.64 0.03284 

50 1324.6 804.27 746.49 0.04103 

Roller 4 50656.34 

10 2126.9 1094.9 620.35 0.0428 

20 1951.7 1021.8 634.68 0.04448 

30 1802.2 984.04 689.2 0.04793 

Roller 5 73318.39 

10 2105.2 1084.6 633.57 0.05157 

20 1922 1009.9 640.66 0.05374 

30 1820.2 993.23 692.28 0.05704 

Table 9. Values of parameters for different hollowness for Roller 2, 3, 4 & 5 
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Figure 28. Comparison of hollowness for different rollers 

From Fig. 28 it is clear that for  

Roller 1 optimum hollowness should be 52% for the applied load of 5414.28 N,  
Roller 2 optimum hollowness should be 39% for the applied load of 10397.88 N, 
Roller 3 optimum hollowness should be 45% for the applied load of 21620.59 N, 
Roller 4 optimum hollowness should be 29% for the applied load of 50656.34 N, 
Roller 5 optimum hollowness should be 28% for the applied load of 73318.39 N. 

It is very clear from the results and discussion of all five rollers that optimum value of 
hollowness is dependent on magnitude of applied load, bearing geometry i.e. diameter and 
length of roller and mechanical properties of material used. If the value of applied load will 
increase than hollowness should be reduced to maintain the bending stress within 
endurance limit of the material. Change in bearing geometry will change the applied 
pressure and resulted into change in hollowness. Thus the solution given in Fig. 26 and 27 is 
not a generalized solution and it can not be applicable to any bearing geometry for any load. 
It is applicable to specific type of bearing and for specific load only respectively. If applied 
load will change one can’t use the results shown in Fig. 28 and lengthy FE procedure should 
be again carried out to get the result in the form of hollowness.  

5.1. Generalized graphical solution 

To find the optimum hollowness for any material and for any applied load irrespective of 
bearing geometry, in the present work large data are generated by FE analysis. To get the 
generalized solution FE analysis for the hollowness percentage ranging from 1% to 95% 
(after 95% ANSYS solution was not supported) is carried out and following Table 10 has 
been developed. This table shows the values of bending stress corresponding to the 
applied pressure.  

Table 10 is presented in graphical form in Fig. 29. This diagram shows the value of bending 
stress for different applied pressure with respect to hollowness ranging from 1% to 95%. 
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Applied 
pressure 
(N/mm2) 

Bending Stress (N/mm2) 

1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 

99.06 515.11 526 633.57 640.66 692.28        
98.52 497.6 512.3 620.35 634.68 689.2        
86.56 441.46 450.112 500.59 548.37 599.86 693.55       
78.3 419.68 418.9 452.84 496.14 542.76 627.65       
76.66 371.8 401.3 468.32 491.53 538.21 619.64 746.49      
70.21 344.029 359.13 429 450.31 493.08 567.54 683.78      
68.16 330.68 347.21 377.07 422.55 463.1 539.91 650.03 822.71 1123.8 1721.4 3365 4653.6 
59.55 303.71 309.66 329.92 369.25 404.64 471.74 567.96 718.81     
55.42 277.1 282.64 321.12 351.66 384.46 444.33       
52.18 263.5 273.95 319.16 334.9 366.59 422.04 508.42      
36.39 189.23 192.867 201.72 225.7 247.51 288.52 347.05 439.33     
26.39 129.311 138.475 161.84 169.76 185.62 213.61 257.35      
23.51 112.848 124.6 136.5 149.44 163.28 188.71       
6.52 33.9 34.88 36.36 40.636 44.509 51.777 62.158 78.697     

Table 10. Value of bending stress corresponding to the applied pressure 

 
Figure 29. Bending stress vs applied pressure for different hollowness 

6. Conclusion 

In case of solid roller bearing induced sub-surface stresses are the limiting criteria for the 
fatigue life of bearing whereas for hollow roller bearing bending stress is the limiting 
criteria. The bending stresses on the internal diameter of the roller in the plane of the 
loading forces are the most critical for destructions. In the present work graphical solution 
was developed to determine optimum hollowness of cylindrical roller bearing for which 
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induced bending stress should be within the endurance limit of the material. Figure 29 
shows the generalized diagram for bending stress vs applied pressure. Following are the 
major outcomes from this diagram. 

For the same value of applied pressure, Fig 29 shows that there is very small variation in the 
value of bending stress by increase the hollowness from 10% to 30%. 

If the hollowness increases from 1% to 95% the slop of line will also increase accordingly. 

The durability of the bearings with hollow rollers operating on cycles not exceeding the 
maximum permitted level of bending stresses can be substantially greater than the 
durability of similar bearings with solid rollers. 

For the applied load on equivalent size of roller initially applied pressure is to be calculated. 
As per the endurance limit of the material used and calculated applied pressure optimum 
hollowness can be identified from the diagram.  

For the particular hollowness diagram gives the maximum limit of applied pressure and 
hence applied load. The developed graphical solution can be applicable for any material of 
bearing.  
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1. Introduction 
Nowadays automobiles are required to meet environmental requirements, such as lower 
exhaust emissions and higher fuel economy. One of the key factors for improving the 
overall efficiency of a vehicle is the efficiency of its transmission. 

A CVT has a greater potential for improving fuel economy than a step-type automatic 
transmission (AT), because of its integrated control with the engine [1]. That is, CVTs are 
capable of continuously tracing engine operating ranges with high fuel efficiency. Another 
advantage is that CVTs allow vehicles to drive without lowering the driving torque or the 
engine rpm while shifting the gear ratio.  

However, when the transmission efficiency of a CVT by itself is compared with a step-type 
AT, CVT is known to have lower efficiency because its driving torque is transferred by 
means of contact and friction [2]. The transmission efficiency of a CVT is determined by 
friction loss at its oil pump and metal pushing V-belt. The oil pump must produce enough 
pulley pressure so that the metal V-belt mounted between two pulleys does not slip. A 
higher pulley pressure, however, means a greater friction loss at the oil pump [3]. 

As for the metal V-belt, gradually lowering pulley pressure while maintaining a constant 
transmission torque increases the transmission efficiency of the belt by itself, as long as it 
does not slip on the pulleys. However, the transmission efficiency begins to drop under a 
certain operating condition. This implies the existence of an optimum operating condition 
that maximizes the transmission efficiency of the belt [4]. To find this condition, it is 
important to predict friction loss at each portion of the metal V-belt during CVT operation. 

A considerable amount of research has so far been made on methods for calculating friction 
loss that occurs at each part of the V-belt, but many of them use simple equations that are 
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based on assumptions and not linked with dynamic belt behavior [5]. Accordingly, although 
these methods simulate the tendency of friction loss on each belt part, they are not sufficient 
for examining the influence on friction loss of metal belt shape and pulley rigidity. 

A commercially available multi-body simulation (MBS) code used to be chosen for the 
dynamic belt behavior [7]. In the MBS model, each V-belt block was treated as a separate 
rigid body. Contact normal forces were modeled between adjacent blocks, using realistic 
stiffness and damping properties. Contact normal forces, along with both radial and 
circumferential friction forces, were also modeled between the block edges and pulley faces. 
Block geometry and material properties were used to arrive at contact stiffness and damping 
characteristics. As such, the MBS model contained a relatively small number of degrees of 
freedom. At the results, the contact forces between the block edges and pulley faces could be 
only obtained, not the contact pressure distribution. 

Therefore, the following describes how CVT-ratio control logic was included in the 
previously reported technology for simulating the dynamic behavior of a metal pushing V-
belt, and presents how the new simulation can closely reproduce actual operation. Thus, this 
paper reports a technology developed to predict the transmission efficiency of a CVT drive 
system comprising a metal pushing V-belt and pulleys. 

2. Development aims 

2.1. Maintaining speed ratio with feedback control 

Figure 1 shows the main section of the CVT used in this development. A metal V-belt is 
mounted in the V groove on two pulley shafts, and a pair of movable pulleys are mounted on 
the shafts to face each other. The movable pulleys are shifted in the axial direction by line oil 
pressure supplied from the inside of the shaft. When the CVT is in operation, feedback control 
is exercised to maintain an arbitrary speed ratio between the two pulleys, varying the oil 
pressure applied to the large-diameter (in terms of belt mounting position) pulley while 
maintaining a constant pressure for the small-diameter pulley. When taking an example of the 
top ratio, the drive pulley speed, driven pulley torque, driven pulley oil pressure, and target 
ratio are input to the feedback control system. The system then outputs the driven pulley 
speed, drive pulley torque, and drive pulley oil pressure. The input-output relation differs 
from the metal V-belt behavior simulation technology developed previously, so it was 
necessary to incorporate a new feedback control into the simulation in this project. 

2.2. Pulley shaft thrust load ratio 

Pulley shaft thrust load is obtained as the sum of two values: the product of oil pump line 
pressure and its acting area, as well as the product of centrifugal oil pressure and its acting 
area. The ratio between drive pulley thrust load and driven pulley thrust load, referred to as 
the pulley shaft thrust load ratio, has a positive correlation with the speed ratio; therefore, 
this ratio is uniquely determined once the speed ratio is set. Because the developed 
simulation outputs pulley shaft thrust loads, its prediction accuracy can be verified by 
comparing simulated and measured values. 
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Figure 1. CVT cross section 

2.3. Transmission efficiency 

Transmission efficiency can be obtained by multiplying the ratio between drive shaft torque 
and driven shaft torque by the speed ratio, as expressed in Equation (1). Here, each torque 
value can be obtained as the product of a tangential friction force, generated between the V-
face of each pulley and metal V-belt elements, and the effective element V-surface radius. As 
such, it is necessary to accurately predict the direction of a friction force acting on each 
element V-surface and its effective radius under that condition. The effective radius of the 
element V-surface is influenced by its contact pressure distribution. This means that it is also 
necessary to consider the elastic deformation of the element V-surface. 

For this reason, to simulate the transmission efficiency of the metal pushing V-belt, the 
following were set as development objectives: 

1. Implement feedback control equivalent to speed ratio control performed in an actual 
vehicle 

2. Quantify sliding velocities and friction forced at various element contact areas 
3. Calculate friction losses at various portions of the metal V-belt 

3. Technology of predict transmission efficiency of metal pushing V-belt 

3.1. V-belt model consideration of element deformation 

The transmission efficiency of a metal pushing V-belt is mainly determined by friction losses 
that occur between its elements and pulleys and between the elements and rings. Friction 
loss has a correlation with the product of the friction force and sliding velocity of a friction 
surface. Accordingly, a key to predicting the transmission efficiency is to simulate the 
friction forces and sliding velocities of the element V surfaces in contact with the pulley. 
These friction forces and sliding velocities have distributions on the pulley, and these 
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distributions cannot be simulated accurately unless element deformation is taken into 
account (Figure 2). Because the effective radius of elements would be influenced by the 
contact pressure distribution. For this reason, an element stress prediction model [6] 
previously designed to consider element deformation was modified to make a model of the 
metal V-belt used in this study. 

 
Figure 2. Comparison of friction force distribution of Element V-surfaces on DR pulley 

Figure 3 and Figure 4 show the model. Two flexible solid elements are employed in the 
direction of thickness for individual elements to reproduce bending deformation. Three 
flexible solid elements are used to divide the R section of the element neck, where stress is 
thought to concentrate. Reproduction of detailed form of the nose and hole sections has 
been prioritized, and therefore modeled with rigid elements. Four flexible shell elements 
have been used in the direction of width to model each layer of rings to enable reproduction 
of the crowning of the rings. In addition, the ring-element, element-element, ring-ring and 
element-pulley contact surfaces have been defined, and appropriate friction characteristics 
have been assigned in each case. 

To make the load conditions around the belt pulleys closely resemble the layout in an actual 
CVT, beam elements were used to express the shafts. In this model, the shafts are supported 
at the bearing positions. Also, a gear is provided to mesh with the driven (DN) shaft to 
reflect reaction forces applied by the gear. Because the belt mounting diameter varies 
depending on speed ratios, deflection rigidity calculated for the mounting positions of each 
ratio was applied to the pulley V-face. Regarding the relation between each shaft and the 
movable pulley, the model defines a fitting clearance at their engagement position, as well 
as a backlash in the rotational direction at the roller position. 

Figure 5 shows the flow of analyzing the metal V-belt. In this flow, the belt is initially placed 
at the perfect-circle position under no stress, and then both pulleys are moved to a specified 
shaft distance. Next, misalignment is applied to one of the pulleys. Then, the drive pulley is 
gradually accelerated to reach a target speed, while pulley thrust pressure is being applied. 
In the meantime, reverse torque is gradually applied to the driven pulley. 
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Figure 3. Metal V-belt model for predicting transmission efficiency considering shaft deformation 

 
Figure 4. Boundary condition around pulley shaft 

 
Figure 5. Analytic procedure 
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3.2. Belt transmission efficiency prediction using pulley thrust pressure control 

The transmission efficiency η of the V-belt can be obtained by the following equation: 

 dn Tdn Tdni
dr Tdr Tdr





 


 (1) 

ωdr : drive (DR) shaft speed  
ωdn : driven (DN) shaft speed  
i : ratio 
Tdr : DR shaft torque  
Tdn : DN shaft torque 

Thus, the DR shaft torque, DN shaft torque, and ratio must be obtained to predict efficiency
η. The conventional element stress prediction model required simulations to be made based 
on pulley thrust pressures measured in an actual CVT. Unlike element stress measurement, 
the transmission efficiency can be easily measured in an actual vehicle, but it would be 
impractical for a simulation to require actual measurements to predict the efficiency. 
Accordingly, a pulley thrust controller used in the previous research [7] was implemented in 
the simulation to apply pulley thrust pressure that depended on each operating condition. 

Figure 6 is a block diagram of the thrust controller. Enclosed in the dashed box in this figure is a 
traditional proportional-integral (PI) controller. This controller calculates the actual ratio from 
ωdr and ωdn of the belt model, and adjusts pulley thrust pressure by means of a feedback loop 
until the ratio reaches a target value Itarget. Controller gains were re-defined because the 
previous metal V-belt model was replaced with the element stress prediction model. 

 
Figure 6. Thrust controller block diagram 

Figure 7 shows calculations made with the metal V-belt model incorporating the above 
pulley thrust pressure control. In this simulation, ωdr, Tdn, and the driven pulley thrust 
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pressure Qdn were given as input, and the drive pulley thrust pressure Qdr was controlled 
to make the actual ratio reach the target value. Because speed ratio error must be considered 
in deciding the Qdr control value, pressure was applied before starting the rotation. Then, 
ratio control was started after making sure that the actual ratio had been read accurately. As 
demonstrated in Figure 7, the speed ratio is maintained at the target value when the pulley 
thrust pressure is controlled by the ratio controller. 

 
Figure 7. Effect of ratio controller 

Figure 8 shows the belt transmission efficiency obtained from the computation result of this 
model. As shown here, the simulation implementing pulley thrust pressure control enables 
transmission efficiency prediction at a target speed ratio. 

 
Figure 8. Calculated transmission efficiency of metal V-belt with ratio controller 

4. Belt transmission efficiency at different ratio 

In a CVT equipped with a metal pushing V-belt, the transmission efficiency is known to 
peak at the speed ratio of 1.0 (MID). The efficiency lowers gradually while a vehicle is 
decelerating (shifting to LOW) or accelerating (shifting to OD). The developed simulation 
was used to calculate friction loss at each portion of the metal V-belt at different speed 
ratios. 

4.1. Accuracy of belt efficiency prediction 

Figure 9 shows belt transmission efficiency calculated for and measured at the MID, LOW, 
and OD ratios under a certain operating condition. Figure 10 shows the calculated and 
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measured pulley shaft thrust load ratios. Both graphs indicate the same tendency, which 
verifies the validity of simulations at all ratios. 

 
Figure 9. Belt transmission efficiency 

 
Figure 10. Ratio of drive and driven pulley thrusts 

4.2. Friction loss of metal V-belt at each ratio 

As mentioned before, the transmission efficiency of a metal pushing V-belt is mostly 
determined by friction loss that occurs between its elements and pulleys and between the 
elements and rings. Calculations were therefore made to compare friction losses of these 
areas at different ratios. 

Figure 11 shows friction forces acting on the element V-surface and the element-pulley 
speed difference during one rotation of the belt. Similarly, Figure 12 shows friction forces 
acting on the element saddle surface and the element-ring speed difference. Both friction 
forces and speed differences are in the torque transmission direction. The speed difference is 
calculated for the same belt mounting position at each ratio. Figure 11 shows the speed 
difference between the element V-surface speed and the pulley speed, and Figure 12 the 
difference between the element saddle speed and the speed of the innermost ring. 

When a speed difference occurs between two parts to which a friction force is applied, this 
speed difference may be assumed to be sliding velocity. Thus, friction loss can be obtained 
by multiplying the sliding velocity and the friction force. Figure 13 shows friction losses 
calculated in this way for the element V-surface and the saddle surface at each ratio. When 
attention is paid to friction loss on the element V-surface, loss is large near the drive pulley 
exit at the LOW ratio. In contrast, at the MID and OD ratios, friction loss is greater at the 
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pulley entrance. On the driven pulley, loss is greater near the pulley exit, regardless of the 
ratio. When studied in relation to sliding velocity, friction loss becomes greater at locations 
where the sliding velocity is higher at all three ratios. 

As for friction loss on the saddle surface, loss is smaller at the MID ratio than the other 
ratios. This is because, at the MID ratio, the belt mounts on a medium-diameter position on 
the pulley, where the sliding velocity between the pulley and the element is lower. At the 
other ratios, friction loss on the saddle surface is greater when it is on the smaller-diameter 
pulley. 

A similar comparison was made with friction loss that occurs between adjacent elements 
and between adjacent of rings (Figure 14, Figure 15, and Figure 16).  

As shown in each figure, friction loss is smaller than the loss calculated for the two 
aforementioned areas. This is because the sliding velocity is smaller between adjacent 
elements and adjacent rings where a friction force is present. 

 
Figure 11. Element V-surface friction force and element-pulley speed difference 

 
Figure 12. Element saddle-surface friction force and element-ring speed difference 

Figure 17 shows the comparison of friction losses per unit time at the three speed ratios. 
When this figure is studied with Figure 9, it is clear that friction loss is greater at ratios with 
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lower transmission efficiency. The comparison also reveals that the transmission efficiency 
is affected by friction losses on the element V surface and the saddle surface. When attention 
is paid to the proportion of friction losses at different ratios, friction losses on the element V-
surface and the saddle surface are almost equal at the LOW ratio. At the OD ratio, friction 
loss on the saddle surface accounts for a dominant proportion. 

 
Figure 13. Friction loss on element friction surface 

 
Figure 14. Friction force and speed difference between adjacent elements 

 
Figure 15. Friction force and speed difference between adjacent rings 
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Figure 16. Friction loss between adjacent elements and between adjacent rings 

 
Figure 17. Belt friction loss per unit time 

5. Application for actual CVT configuration 

Figure 18 shows an actual CVT configuration to be calculated the transmission efficiency. 
Replacement of the former single-piston configuration with double pistons aligned in the 
axial direction has resulted in approximately 1.8 times more thrust at identical oil 
pressures. This has reduced line pressure when the CVT is in its frequently used 
overdrive ratio, thus reducing the pump workload. In this mode, the elements and the 
pulleys are modeled as elastic bodies to help enable their deformation to be considered. 
The number of divisions in the circumferential direction was increased and a coefficient of 
friction was set to help enable study of the effect of the fit clearance of the fitted parts of 
the pulley shaft and the movable pulley and of the roller spline backlash. Figure 19 shows 
Von Mises stress distribution except the gears. Most of the parts are now modeled as 
flexible bodies. 

The transmission efficiency is now predicted using pulley thrust pressure control with 
appropriate control gains. (Figure 20) The speed ratio is kept at a target speed ratio during 
this simulation. 
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Figure 18. Metal V-belt model considering pulley V-surface deformation 

 
Figure 19. Stress distribution of Metal V-belt and pulleys 

 
Figure 20. Calculated transmission efficiency of metal V-belt with FEM pulleys 
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5.1. Effect of fit clearance on transmission efficiency 

In CVTs equipped with metal pushing V-belts, transmission efficiency is known to peak at 
the shift ratio of 1.0 (MID). Transmission efficiency declines gradually while the vehicle is 
decelerating (shifting to LOW) or accelerating (shifting to OD). However, the effect of the 
clearance of the section in which the external shape of the pulley shaft and the internal 
diameter of the movable pulley are in contact and of the roller on the transmission efficiency 
and the strength of the metal pushing V-belt is not necessarily clear. The method discussed 
here was therefore employed, using the OD ratio, in order to calculate friction loss for each 
part of the belt when the clearance of the section in which the external shape of the pulley 
shaft and the internal diameter of the movable pulley are in contact (“large-diameter 
clearance” below) and the clearance in the direction of rotation determined by the roller 
(“backlash” below) were varied. 

Figure 21 and 22 show that when the large-diameter clearance of the fitted sections becomes 
narrower, friction loss on the element V-surfaces is reduced, and the transmission efficiency 
of the belt increases. Fig. 23 shows the changes in the winding diameter of the belt at this 
time. When the large-diameter clearance increases, the changes in the belt winding diameter 
also increase in magnitude. In other words, the belt slips in the radial direction, thus 
reducing the amount of friction force available for transmission, with the result that 
transmission efficiency declines. In addition, a comparison of the surface pressure 
distribution on the element V-surfaces shows that when the large-diameter clearance 
becomes greater, the surface pressure distribution tends towards the inside of the radius 
(Fig. 24). This is believed to be an effect of the fact that when the belt is transmitting torque, 
its effective radius is reduced, and torque transmission efficiency declines. 

 
Figure 21. Fit clearance and friction loss on belt surface 

 
Figure 22. Fit clearance and belt transmission efficiency 
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Figure 23. Fit clearance and belt pitch diameter 

 
Figure 24. Fit clearance and distribution of element V-surface pressure 

5.2. Effect of pulley stiffness on belt transmission efficiency 

Of the parts that make up a CVT, the size and weight of the pulleys is particularly high, creating 
the need for the development of lighter-weight pulleys. Effects on the strength of metal pushing 
V-belts due to changes in pulley stiffness resulting from reduction in weight have also been 
reported [5,7]. As in the analyses conducted in the previous chapters, the effect on the 
transmission efficiency and strength of the belt when the pulley stiffness was varied was 
therefore considered. Altering the form of the pulleys in order to quantitatively vary stiffness 
would represent a challenge, and Young’s modulus for the pulleys in the model discussed 
above was therefore altered in order to vary the stiffness. The Young’s modulus of the pulleys 
was varied by ±20 against Young’s modulus for iron, and the fit clearance was minimized. 

As Figure 25 and 26 show, when the pulley stiffness is reduced, friction loss on the element 
V-surfaces increases, and the transmission efficiency of the belt declines. Figure 27 shows 
changes in the winding diameter of the belt at this time. A comparison of these results with 
the results of former chapters shows that the effect produced by reducing the stiffness of the 
pulleys displays an identical tendency to that produced by increasing the fit clearance, but 
the magnitude of the change is smaller. 

6. Discussion 
These analyses focus on the steady state response under some operating conditions. However, 
some results show the vibration, such as speed difference between element and ring in Figure  
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Figure 25. Pulley stiffness and friction loss on belt surface 

 
Figure 26. Pulley stiffness and belt transmission efficiency 

 
Figure 27. Pulley stiffness and belt pitch diameter 

 
Figure 28. Friction coefficient currently used on element V-surface 
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12. These are two reasons for the vibration. One is the impact forces are generated when the 
element gets into and out the pulleys. Another is the each element behavior itself. Figure 28 
shows the element reaction force on V-surface and the friction coefficient on V-surface. The 
friction coefficient in these analyses shows the vibration in the pulleys. This presents that each 
element could move individually to keep the contact and friction for adjacent parts. 

7. Conclusion 

1. Feedback control to maintain speed ratios in an actual CVT has been implemented in a 
metal V-belt behavior simulation, making it possible to predict the CVT transmission 
efficiency under an arbitrary operating condition. 

2. This simulation has successfully quantified sliding velocities and friction forces of 
element contact areas along the entire length of the V-belt. 

3. The simulation was used to calculate friction losses from sliding velocities and friction 
forces at different ratios—loss on the V-surface, loss on the saddle surface, loss between 
elements, loss between rings, and their proportions. 

4. The simulation technique was also available for actual CVT configuration to predict the 
transmission efficiency using flexible pulley components. 
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1. Introduction 

The determination of stresses, deformations and the proper evaluation of calculations outputs 
are of extreme importance on the mechanical components and to assembly’s effectiveness in 
the Mining Environmental. For instance, components of heavy duty plant machinery like Car 
Dumpers, Apron Feeders, Stacker-Reclaimers, etc…, and important components of Stacker-
Reclaimers like Pulleys; which are under high responsibility must be calculated and designed 
properly and carefully. The unknown or ignorance of the complete environmental or data 
inputs (loads and constraints) where the component is applied, can bring tremendous 
damages to society and jeopardize entire businesses, mainly whether lives are involved. 
However, new technological tools, like Finite Element Method (FEM), have brought an even 
higher level to a better understanding of the complex products, those which have several parts 
in its conception. Like Klauss [2] describes, the Finite element methods are now widely used to 
solve structural, fluid, and multiphysics problems numerically. The methods are used 
extensively because engineers and scientists can mathematically model and numerically solve 
very complex problems. FEM is considered though a step further on the path on designing 
products, saving weight, consequently costs of design and manufacturing by the better 
understanding the pieces behaviors and performance prediction. 

To evaluate the stresses in mechanical parts and/or components there are basically two 
manners; by the analytical approach and/or finite element method. This last, considered the 
most recent and complete tool to evaluate stresses and strains [2]. 

An example of the FEM simulation is shown briefly in this chapter when designing pulleys 
to Stacker-Reclaimers. We selected a standard pulley and generated it by analytical model 
(Redundant Structure Model) as well as by Finite Element Method (FEM) under linear 
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analysis. The analytical formulas presented in the text are those belonged to the classical 
mechanical engineering background. In fact, the analytical calculation has presented success 
along the time once most of the products in the field have performed properly. The model is 
considered robust enough to deliver products under high quality of project and which 
considers the material and manufacturing data in order to determine the allowable stress by 
safety factors. 

This paper describes the limited resources when calculating pulleys (for Stacker-Reclaimers 
or belt conveyors) by analytical methods in comparison with the advantages of the Finite 
Element Method and its comparatively minor imprecision. The analytical calculation, 
particularly, presents an issue considered a constraint to overcome, which is related to the 
energy contribution by linear elastic deformation, of each component to the final sum of the 
stress x strain in the assembly.  

To FEM simulation, the software Inventor 2010 [3] was used to develop the model, 
meanwhile the calculation by FEM made by Autodesk Simulation [4]. 

2. Overview of products modeled in 3D and simulated by FEM 

In the mining business the usage of software’s in modeling components and machines 3D 
and afterwards simulated by FEM has increased potentially within the last decades. 
Machines like, Car Dumpers (Figure 1), Apron Feeders (Figure 2) and Stackers-Reclaimers 
(Figure 3) and their main components are modeled 3D and simulated by FEM software’s. 
Several software’s, specialized in modeling are available in the market, for example, 
Solidworks, Ideas, Inventor etc…, and in terms of FEM simulation, Nastran, Ansys and 
Autodesk Simulator are at the edge of this technology.  

2.1. Advantages and drawbacks of modeling 3D and simulating by FEM in 
mining 

Due to the upgrade in the way of designing products along the last decades, the 
technologists and engineer´s had to change their minds when studying products in their 
initial phase of product design. Till the last decade the drawings were done basically in 2D 
environment, manually by clip boards and later on by CAD in computers. These required 
high imagination and capacity to evaluate technically and precisely the components in 
spatial views and in free space. However, the possibility of error by interferences between 
parts was relatively high and when happened, high costs were involved due to the required 
interven in the manufacturing or in the field. With the event of modeling by software, the 
need of another way of thinking about components and/or machines was strictly required. 
Despite of apparently complex, at first sight, due to the change of the way of designing, the 
FEM brings some advantages which worth, as follow; 

a. Mitigate or eliminate interferences, by visual analysis and software testing, decreasing  
substantially the re-work in manufacturing or in field; 

b. the possibility of designing lean shapes to particular application and loads;  
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c. having lower weights and consequently more effectiveness in energy savings to 
rotary/dynamical parts; 

d. providing refined visual presentation (3D) of stresses and displacements suffered by the 
parts. Therefore bringing excellent power of analysis for engineers;   

 
Figure 1. Car Dumper – overview, modeled by Inventor 

 
Figure 2. Apron Feeder – overview, modeled by Inventor 
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Figure 3. Stacker-reclaimer machine, overview – modeled by Inventor 

Note – the 3D model in FEM however requires more deep knowledge of technologists and 
engineers in Stress x Strain analysis, stress tensors/matrixes, material properties, isotropy 
and anisotropy, stress states, residual stresses, von-Mises, Mohr circle and basic mechanics 
evaluations criteria. Even with the software  advantages, the output in the FEM models still 
remains as the engineering duty; 

a. beauty pictures to present products in commercial and marketing scenarios (high 
sensation of reality); 

b. in order to produce manuals to operation and/or maintenance.  

There also drawbacks in the FEM simulations, like;  

a. limits when interferences between parts are present in the model, which require non-
linear analysis;  

b. usually residual stresses are present in the real component but are neglected in the 
model;  

c. small details in the big picture sometimes need to be handled or suppressed in order to 
have allow enough capacity to run the model, even when powerful computational 
machines are used. 

In order to overcome such deficiencies in the FEM calculations, safety stresses are applied 
and fatigue coefficients used within fatigue models like; Goodman, modified Goodman, 
Gerber and/or Soderberg (15-16) .  

3. Description of an analytical method  

Most of the formulas of strength of materials express the relations among the form and 
dimensions of a member, the loads applied thereto, and the resulting stress or deformation. 
Any such formula is valid only within certain limitations and is applicable only to certain 
problems. An understanding of these limitations and of the way in which formulas may be 
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combined and extended for the solution of problems to which they do not immediately 
apply, requires knowledge of certain principles and methods that are stated briefly in the 
pulleys calculations ahead. In determining stress by mathematical analysis, being analytical or 
FEM, for example, it is customary to assume the material as elastic, isotropic, homogeneous, 
and infinitely divisible without change in properties and in conforming to Hooke´s law, which 
states that strain, is proportional to stress. On the other hand, these assumptions despite of 
imposing certain limitations upon the conventional methods of stress analysis must be used in 
the form of safety factors. This precaution has given satisfactory results for nearly all problems 
in engineering, being in analytical or FEM models. 

The pulley is basically composed by; expansion ring (when applicable), hub, shaft, disc and 
cylinder, as seen in the Figure 5 below. The calculation of individual components is still not 
an issue nowadays and classical formulas may be applied without main difficulties. But 
when there is an increase of components quantity and the interaction among them takes 
place, the analytical method cannot predict the real and accurate interaction, energy shared 
by each component in the assemble, due the imposed deformations. In other words, the 
proportion of deformation of each individual into the ensemble is a very complex to 
determine accurately and manually.  

3.1. Division of forces in assemblies and redundant structures, pulley 
application 

The concepts of force´s flow are useful in the visualization of paths taken by the forces lines 
when crossing machines or structures from the load points till the support points. Whether 
the structure is simple and statically determined, the equations of equilibrium are enough to 
determine the reactions. On the other hand if redundant supports exist, it means additional 
supports to those required to satisfy the static equilibrium conditions, those simple 
equations are not enough anymore to explain the intensities (magnitude) in any one of the 
reactions. It happen due to the support works as a separated “spring”, deflecting under 
load, proportionally to its stiffness, in a manner that all reactions are shared by all supports 
under an unknown way. Whether a stiffer rigid or under a rigid fixed deflection are in 
parallel with a less stiff spring or under a flexible deflection, the rigid deflection will absorb 
a higher portion of the loading. But whether a stiffer rigid or under a rigid fixed deflection 
are in series with a less stiff spring or under a flexible deflection, the loads absorbed are 
similar. The importance of such simple concept is applicable to all machines and real 
structures where exist the combinations of parts (“springs”), in series or parallel (7). 

As seen in the Figure 4 the springs can be arranged in parallel arrangements as well as in 
series. If the springs are arranged parallel the deflections are the same but the total force F is 
divided between the spring 1 and spring 2, as follow; 

   (1) 

once,    



 
Finite Element Analysis – Applications in Mechanical Engineering 282 

 �
� = 	

��
�� +	

��
��	  (2) 

from where is obtained; 

 �� = �� + ��	 (3) 

to kp as being the spring constant to each spring in parallel 

 
Figure 4. Different springs (stiffness – in parallel and series) 

When the springs are arranged in series, the force F is the same to both springs, but the 
deflection of the spring 1 and spring 2 are associated to compose the total deflection, it means; 
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from where is obtained; 
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���	
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to ks as the combined constant to springs in series  

The diagram in the Figure 5 shows the pulley main components with imposed load. This 
load is transferred to all components and the total energy required to absorb such energy is 
composed by the sum of individual deformation. This deformation is directly related to the 
bending imposed in the Cylinder, the Disc and the Shaft. The sum of those deformations can 
be described as follow; 

 �	�		�	�	2. �	�	�		 (6) 

T is the total deformation, C the deformation of cylinder, S the deformation of shaft and 
the D deformation of discs. The deformation of hub is considered zero due to its superior 
stiffness. 

In the case of pulleys the system can be considered the same as explained with springs, 
what means, the cylinder and the shaft are in series and the discs are parallel each other 
but in series with the other components. The assembling equation then can be arranged as 
follow; 

 �� = �
�.���

�.�.�.���
�	 ���
�.�.���.��.��.�.������

		 (7) 
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where LE it the distance between the block bearings in the shaft, LC it the length of cylinder, d 
is the cylinder internal diameter, b the disc thickness, Rd the radii of disc, r the internal radii 
of disc, E the Young Modulus, RE the shaft radii and 	 the thickness of the disc. The final 
deflection of the ensemble is determined by; 

 �� = �
��		 (8) 

being yT the total deflection in mm, P the resultant load applied in N and kT the ensemble 
constant (N.mm). 

 
Figure 5. Diagram of pulleys loaded. 

It is quite easy to identify the contribution of each element by a simple comparison between 
the pulleys components in the formula above and in the Figure 5. The load is transmitted by 
the pulley cylinder toward the discs, which suffer the high deformation due to its low 
inertia, then to the shaft which is bent due to the reactions at the bearing blocks. This is a 
normal condition found in driven pulleys, the drive pulleys contain an additional load, 
torque, transmitted from the shaft to the discs and lately to the cylinder. The drive pulley 
won´t be covered at this chapter. 

4. Description of Finite Element Method (FEM)  

4.1. Method  

Like described previously, the finite element method (FEM) is a very powerful technique for 
determining stresses and deflections in complex structures when compared with analytical 
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methods. With this method the structure is divided into a network of small elements 
connected to each other at node points. Finite element method grew out of matrix methods 
for the analysis of structures when the widespread availability of the digital computer made 
it possible to solve system of hundred of simultaneous equations (8). The FEM is then a 
computerized method for predicting how a real-world object will react to forces, heat, 
vibrations, etc… in terms of whether it will break, wear out or function according to design. 
It is called “analysis”, but in the product design cycle it is used to predict what will happen 
when the product is used (5).  

4.2. Nodes and elements 

A node is a coordinate location in space where the Degrees Of Freedom (DOFs) are defined. 
The DOFs of a node represent the possible movements of this point due to the loading of the 
structure. The DOFs also represent which forces and moments are transferred from one 
element to the next one. Also, deflection and stress results are usually given at the nodes. An 
element is a mathematical relation that defines how the DOFs of one node relate to the next. 
Elements can be lines (beams or trusses), 2-D areas, 3-D areas (plates) or solids (bricks and 
tetrahedra). The mathematical relation also defines how the deflections create strains and 
stresses. The degrees of freedom at a node characterize the response and represent the 
relative possible motion of a node. The type of element being used will characterize which 
DOFs a node will require. Some analysis types have only one DOF at a node. An example of 
this is temperature in a thermal analysis. A structural beam element, on the other hand, 
would have all the DOFs shown in Figure 6. “T” represents translational movement and “R” 
represents rotational movement about  X, Y and Z axis direction, resulting in a maximum of 
six degrees of freedom. 

 
Figure 6. Degrees of freedom of a node (DOFs) 
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The elements, on the other hand, can only communicate to one another via common nodes. 
Elements therefore must have common nodes to transfer loads from one to the next, such as 
in the Figure 7 below. 

 
Figure 7. Communication through Common Nodes 

Computer programs usually have many options for types of elements to choose, below the 
most usual elements (9): 

 
Figure 8. Most usual 3D elements 

Since the applied load vector and element stiffnesses are known from the user input, the 
equation can be solved using matrix algebra by rearranging the equation as follow for the 
displacement vector: 

 x� � ������ ���   (9) 

where; {f} is the vector that represents all of the applied loads. [K] is the assemblage of all 
the individuals’ element stiffness (AE/L) and {x} is the vector that represents the 
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displacement. A is the area, E is the Modulus of Elasticity and L the length, and {f} =
� � ���
� 	. 

The strains are computed based on the classical differential equations. Stress can then be 
obtained from the strain using Hooke´s law. These basic equations do not require the use of 
a computer to solve. However, a computer is needed when complexity is added (4). 

4.3. How to build the model 

Each individual piece is modeled 3D and then the final assembling built by each part 
gathering in the final component (product - pulley), see Figure 9 below. The boundary 
conditions have constraints between the shaft and the hub, the hub and the disc and the disc 
and the cylinder; all constraints are bonded surfaces. The shaft has at the extremes joint 
constraints due the presence of block bearings. The bearing blocks usually are composed by 
spherical roller bearings when pulleys for Stacker-Reclaimers are the case. 

 
Figure 9. Pulley basic components (built in Inventor) 
(sectioned 90o for better visualization)  

The pulley studied has its main characteristics shown in the Table 1 below; 
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Component Material Diameter (mm) Length (mm) Thickness (mm) 

Shaft SAE-1045 150 1600 diameter 150 

Discs ASTM A-36 300 x 980 - 12 

Cylinder ASTM A-36 1000 (outside) 1000 10 

Hub ASTM A-36 150 x 300 - 70 

Bearing block centre 
distance 

- - 1600 - 

Table 1. Pulley main characteristics 

When importing solid models that have thin parts, it is often better and simpler to analyze 
them using plate elements (5-10). Autodesk Simulation can be used to convert thin CAD 
solid models to plate elements. A plate element is drawn at the midplane of the part. Pulleys 
are commonly conditioned as described; it has solid elements, like shaft and hubs; and plate 
elements like discs and the cylinder. As shown ahead the difference is not too substantial 
but depending on the discrepancy of dimensions, comparatively between parts, the values 
(stresses outputs) can differ considerably. The DOFs associated with the plate elements are 
drawn in the Figure 10 and 11 that follows. Note that the out-of-plane rotation (Rz) is not 
taken into account because of plate theory, thus the plate elements have 5 DOFs. 

 
Figure 10. DOFs of midplane elements 

The components were calculated by Autodesk Simulation and each component received a 
particular 3D element type and meshing configuration as follow; the shaft received a brick 
condition with material AISI 1045 as-rolled, the discs received a midplane condition, 
material ASTM A36, isotropic, the cylinder simulated midplane condition, material ASTM 
A36, isotropic. The constraints were determined in the shaft region of block bearings (joint 
constraint). The command, which simulate block bearings with spherical roller bearing, is 
universal joint, which constraint the DOFs at Tx, Ty and Tz as well as Rz (longitudinal to 
the shaft length) in the simulation to the first side, and the DOFs Tx, Ty and Rz to the 
opposite side.  
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Figure 11. Pulley meshing – Autodesk simulation 

The elements in the joints (block bearings) were considered with a very high stiffness’s, 
which guarantee not interference in the stresses results in the model (Figure 12). 

In terms of loading, there was a force applied perpendicular to the surface, which resulted in 
a variable pressure (parabola) around 180o of cylinder, represented by the following 
equation; 

 � � 0,47� �� + 0,47				 (10) 

where P = pressure (MPa) R = pulley radius (mm), 0,47 = pressure (MPa). 

The variable pressure is shown in the figure 13 below. The load applied on the cylinder 
outside and around 180o was 316kN. The analysis was done based on the previous 
description in the Autodesk simulation, being the von Mises stresses analyzed for each 
component, as follow by the Figures 13 to 18. 
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Figure 12. Constraint –Pin (universal joints) 

Based on the fact the pulleys applications are dynamic (cyclic loading) the fatigue limit for 
each material was utilized in comparison with the stress range in reference to the equivalent 
stress (von Mises) by FEM (11-16). The Table 2 and Figure 19 reveal the main stresses on the 
pulley components. All the stresses are compared to the fatigue limit once this is the main 
phenomena the components is submitted. The stress range is calculated toward the von 
Mises stress (10-11). 

 
Component Material von Mises 

(MPa) 
Stress range 

(MPa) 
Fatigue limit 

(MPa) 
Shaft SAE-1045 90 180 230 
Discs ASTM A-36 128 252 200 
Cylinder  ASTM A-36 45 90 200 

Table 2. Stresses on the main components (MPa) 
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Figure 13. Variable pressure 

All the stresses are under the fatigue limit except the discs, which overtake the limit over 
52MPa. At this case the re-analysis of the discs thickness should be done and the thickness 
most of times increased or another type or thickness of disc applied. After the re-calculation, 
as expected, all assemble components have a new and different stress level, being highly 
recommendable afterwards the revaluations due to the fatigue limit consideration. 

The values found in the analytical model (Table 2) were also compared with the FEM and 
are described in the Table 3 below. 
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Figure 14. Stresses on the shaft (MPa) 

 
Figure 15. Stresses on the discs (MPa) 
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Figure 16. Stresses on the cylinder (MPa) 

 

 
Figure 17. Stresses on the discs (MPa) 
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Figure 18. Stresses at the interface hub and shaft (MPa) 

 
Figure 19. Stresses on the components (MPa) 
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Figure 20. Stresses on the components (MPa) 
Analytical versus FEM 

 

Component Material Stress
(MPa) 

MEF
(MPa) 

Difference 
(%) 

Shaft SAE-1050 102 90 -10% 

Disc ASTM A-36 100 128 +26% 

Cylinder ASTM A-36 54 45 -33% 

Table 3. Difference between analytical and MEF methods 

There are differences in the results between the Analytical and FEM models (11). The 
equivalent stresses on the shaft are closer, around 10% difference, showing the lower value 
found in FEM, the discs are those which have medium difference and around 26%, being the 
stresses on the FEM higher than the analytical model and the third is the cylinder which had 
its lower value found in the FEM and around minus 33%. The differences are not too high 
but in certain cases should be taken into account when safety factors are in the limit due lean 
projects purposes. Neither the analytical model nor FEM are described in details once the 
idea is to bring the basic concepts used in components designing. 
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5. Conclusions  
- The analytical calculation methods are still being used by most of components and 

machines suppliers; 
- the analytical model requires safety factors in order to cover uncertainties in the processes 

like stresses due plastic deformations and/or complex thermal processes like weldings; 
- the analytical model, as known, is not graphical like Finite Element Method (FEM) and 

sometimes considered obscure (not too complete like FEM) in terms of outputs. The 
data are not accurate like those presented by FEM either; 

- Several impacts are in still in phase in the Mining business since the contemporaneous 
usage of models 3D and calculations by FEM; 

- such changes from drawing 2D to 3D have brought the shift on the way of drawing, 
requiring less spatial thought  than before but on the other hand more accurate 
drawings and awareness due interferences;   

- the finite element methods is a powerful tool to calculate most of components and 
machines in the Mining area and nowadays being a reality for some companies of high 
technology; 

- there are advantages when using FEM in terms of easy presentation of results due  
graphics and easy values (stresses and strains) obtained in different directions; 

- the usage of FEM provide more sophisticated ways to analyze the calculations in terms 
of stresses and strains and displacements different directions, states and intensities; 

- even with easier results brought by FEM, they are not free of analysis and positioning. 
The knowledge of mechanics in a deeper way in terms of intensity, state and direction 
of stresses and strains are more eminent nowadays; 

- there are also drawbacks in the FEM like in the analytical, which require the use of 
safety factors. Stresses due different processes which generate stresses like plastic 
deformations and residual stresses due welding are not totally overcome in the method 

- the case shown present a pulley used in Stacker-Reclaimers in order to analyse the 
differences found in both models, analytical and by finite element method. Any of them 
is wrong but they present certain differences in terms of stresses; 

- the best way to evaluate the results is measuring the stresses by strain gages, which is 
not demonstrated in this paper; 

- the evaluation and the comparison between the measured values and the calculated 
ones, being by analytical model or FEM are necessary; 

- the FEM does not discharge the analytical model once the last has not presented problems 
in the field. On the other hand it must be replaced to more sophisticated tools like FEM, 
which brings several benefits beyond of more precision, productivity, friendly analysis 
environmental and cost savings due less weight and prior interference analysis. 
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1. Introduction 

Pitching machines for baseball are widely used in venues ranging from professional baseball 
stadiums to amusement facilities (Adair, 1994). The most important purpose of the pitching 
machine is to reproduce the throws of an adversary pitcher, which will be useful for the 
improvement batting technique. The most common commercial pitching machines for 
baseball are the "arm" type and the "two-roller" type. Some pitching machines can pitch a 
high-speed ball (fastball) and a breaking ball, but these machines have certain limitations. In 
particular, it is very difficult to change ball speed and direction simultaneously (Mish et al., 
2001). Therefore, the throwing performance of conventional pitching machines used for 
batting practice is not very high. Balls pitched to change in instant at various speeds and 
with different pitch types (ex. fastball, curveball, screwball and forkball) are easily achieved 
by a new pitching machine equipped with three rollers which has been developed by the 
authors. It is called a "three-roller" type pitching machine (Sakai et al., 2007). With the 
structure of three rollers, comes the production of a new pitching machine that can pitch 
balls repeatedly in the way the batter desires, controlling both ball speed and pitch type. 
However, as observed during our study, the seam of a baseball coming in contact with the 
rollers, the spin rate and projection angle of the ball delicately change. From the results, it 
became clear experimentally that from the throw accuracy deteriorates.  

In this chapter, the throw simulation of the three roller-type pitching machine is analyzed 
using a commercial dynamic finite element analysis code (ANSYS/ LS-DYNA). The moving 
behavior (such as velocity and spin rate) and contact stress state of the ball pitched by the 
pitching machine are clearly observed. The effect of the throw accuracy by the seam posture of 
the ball in the machine is examined. In addition, the shapes and materials of the rollers do not 
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negatively affect the throw accuracy based on the seam posture examined. In other words, a 
robust roller (optimum roller) has been found. Furthermore, the optimum roller was produced 
on the specifications provided in the analytical results. Based upon throws from the machine 
using the rollers experimented on, the propriety of the analysis results is inspected. 

2. Overview of commercial pitching machine 
One important function of a pitching machine for baseball has traditionally been to throw 
a ball at a very high speed. The most common commercial pitching machines for baseball 
are the "arm" type and the "two-roller" type (Mish et al., 2001). The principal mechanism 
of the arm type machine is a spring and crank lever that imitates a human arm when 
pitching a ball (see Fig. 1(a)). The two-roller type is shown in Fig. 1(b). This machine uses 
two-roller to project a ball by taking advantage of the frictional force between the two 
rollers and the ball. Generally, the ball speed can be controlled with this type of machine, 
but direction changes are very difficult or impossible to achieve. With the two-roller 
machine type, the spin direction given to a ball is controllable only on the plane in which 
the roller is turning, because a ball flies only on that plane. This can change the spin rate 
and speed of the ball by changing the number of the ball's turns on its plane. However, 
the plane must be spun manually in order to produce arbitrary breaking balls. 
Additionally, the batter can be expected pitch type of a ball thrown by the two-roller type 
machine, because when a braking ball is pitched, the projection equipment (two rollers) in 
the machine must be slanted.  

  
Figure 1. Commercial pitching machine. a) Arm type. b) Two-roller type. 

(a) (b)
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Additionally, the throw performance of both types of pitching machine that have so far been 
developed for use during batting practice is not very high. The control precision of the latest 
commercial arm and two-roller types pitching machines is only 300 mm in height and 150 
mm in width. One of the major reasons for this lack of precision is that baseball balls have a 
peculiar seam. Pitchers use this seam to throw various types of pitches, however this very 
seam also decreases the control precision of pitching machines (Mizota et al., 1995, Himeno 
et al., 1999, Sakai, et al., 2007).  

If we wish to develop a high fidelity pitching machine for baseball capable of throwing a 
wide range of pitches with full freedom and control over both the speed and angular 
velocity of the ball, it is important that both of these quantities be independent of one 
another (Oda et al., 2003). Thus, the authors decided to develop a machine with the 
important functions (throwing freely and producing the breaking balls, speeds and direction 
a batter desires) that are currently missing from commercial pitching machines. 

3. Overview of new type pitching machine 

A new type of pitching consists of three rollers arranged around the circumference of a ball 
in its discharge position, and the rotary direction of the ball can be controlled over a full 360 
degrees as the three rollers create three planes on a three-dimensional axis by variously 
changing the turn frequency of each roller. With this structure, various kinds of throws with 
variable pitch types and speeds, becomes possible. A schematic of the pitching machine that 
was developed by the authors is shown in Fig. 2(a), and a photograph of the machine is 
shown in Fig. 2(b).  

This machine employs three rollers, which includes one more roller than the pitching 
machines typically found today. A ball for baseball is thrown with frictional force by the 
rubber tire, and this roller is installed around the circumference of a ball in its discharge 
position at 120° intervals. Three motors are installed, one in each respective roller, in which 
the number of revolutions can be adjusted from 0 to 3000 min-1, and these motors can be 
controlled independently. Additionally, this machine has a mechanism that can change the 
vertical angle  from -5° to 5° and the horizontal angle  from -6° to 6°, as shown in Fig. 2.  

With the new type of pitching machine, which adopts these new mechanisms, a wide range 
of speeds (from 19.4 up to 44.4 m/s), pitch types (fastball, curveball or screwball) and 
variable directions, can be pitched as desired. Moreover, each motor is connected to a 
personal computer (PC) through a controller, and the number of revolutions of each of the 
motors can be controlled by the PC. In addition, this machine is equipped with various 
sensors that measure the number of revolutions N1, N2 and N3 of three rollers, the vertical 
angle  the horizontal angle  and the initial velocity V of the pitched ball. The pitching 
machine is capable of throwing a ball with higher accuracy (vertically 200mm and 
horizontally 100mm) in a wide area at a variety of speeds, employing different pitch types 
compared to current pitching machines.  
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Figure 2. Three-roller type pitching machine. a) Schematic. b) Photograph. 

4. Throw analysis of the three-roller type pitching machine 

4.1. Finite element models and analysis conditions 

In this study, the analysis models of only the roller parts and ball for baseball were made, 
because they were thought most important in the pitching machine for a thrown ball. Finite 
element models of a ball for traditional baseball and the roller part of the pitching machine 
with three rollers are shown in Fig. 3. Each of these measurements is shown in the figure. In 
this analysis, the aluminum alloy flange was very stiff compared to the ball and the rubber 
tire, and was treated as a rigid body. The ball was modeled with a viscoelastic agent in 
consideration of the dynamic characteristics of the ball. The characteristics of the ball were 
determined using a viscoelastic model of three elements, as shown in Fig. 4. This model 
shows the relationship between shear modulus G(t) and time t, which are given in the 
following equation (Hendee et al. 1998, Nicholls et al., 2004, Sakai et al., 2008):  

 0( ) ( ) tG t G G G e 
     (1) 

where G is the relaxed shear modulus, G0 is the instantaneous modulus, and  is the decay 
constant. Each material property in Eq. (1) was decided upon according to static and 
dynamic experiments and a finite element analysis (FEA) conducted on a ball. The material 
properties of these agents are shown in Table 1 (Nicholls et al., 2006). From the results of the 
analysis carried out beforehand, it was confirmed that the shape of the seam of the ball 
influences the throw more so than the materials of the ball. The seam of the ball has the 
same material properties as the ball’s main body. The analysis for throwing the ball was 
calculated using dynamic finite element analysis code (ANSYS/ LS-DYNA, version 9.0, 
Theoretical Manual, 2002).  
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As a condition of the analysis, the initial velocity V0=1.0 m/s and the initial angular velocity 
0 =28.56 rad/s of the ball are given for all cases. The termination time was set to 0.1s from 
the moment of impact of the rubber tire with the ball to the ball’s ejection. These analysis 
conditions were calculated from the image with the pitching experiments filmed using a 
high-speed video camera. Here, the friction coefficient  =0.5 was determined from the 
surfaces in contact with the ball and rubber tire. The value of  will be described in the next 
section.  

In general, there are two possible spin directions for each ball: two-seam (the seam 
appearing two times per ball rotation) and four-seam (the seam appearing four times). 
Additionally, a new model of a ball without a seam (a spherical ball) was created in order to 
examine the effect of the seam. In this analysis, there were three kinds of pitch type 
locations, which are simulated as shown in Table 2 (a no-spin ball, a fastball and a 
curveball). N1, N2 and N3 were revolutions per minute for each roller, and the three roller 
numerical grand total was fixed at 4500 min-1. The analysis was intended to start from the 
time the ball was thrown to just after release. Also, the flight trajectory of the ball after 
release was not considered (Watts et al., 1975, Himeno, 2001, Mizota, 1995).  

 
Figure 3. Finite element models of a ball with seams for baseball and three rubber rollers (15 104 
elements). 
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In the analysis, a local coordinate axis was used as the starting point at the center position 
of a ball in release, as shown in Fig. 5. The projection vertical ( ) and horizontal angles 
( ) were calculated by each ingredient of velocity V (Vx, Vy, Vz ) after the throwing of the 
ball.  

 
Figure 4. Viscoelastic model using three elements of the ball for baseball. 

 

 
Table 1. Material properties of rubber tire and baseball (ball). 

 

 
Table 2. Analytical conditions: three pitch types (no-spin ball, fastball and curveball). 

Property Rubber tire Baseball

Density,  (kg/m3) 1 000 835
Young's modulus, E (MPa) 100 －

Poisson's ratio,  0.45 －

Istantaneous modulus, G 0  (MPa) － 46.15
Relaxed shear modulus, G   (MPa) － 8.85
Bulk modulus, K  (MPa) － 100

Decay constant,   (s-1) － 7 000

unit  (min-1)
N 1 N 2 N 3 N 1+N 2+N 3

Case 1 (No-spin ball) 1 500 1 500 1 500 4 500
Case 2 (Fast ball) 1 700 1 400 1 400 4 500
Case 3 (Curve ball) 1 325 1 750 1 425 4 500

G0－G

G









Optimization and Improvement of  
Throwing Performance in Baseball Pitching Machine Using Finite Element Analysis 303 

 
Figure 5. Coordinate system after pitching ball. 

 
Figure 6. Time series of ball velocity Vx for four-seam fastball (case 2) after pitching. 

4.2. Coefficient of friction μ between ball and three rollers 

The value of the coefficient of friction  range of 0.3-0.8 was analyzed. The results from 
letting  for the three-roller type pitching machine vary between 0.3, 0.5 and 0.8 are shown 
in Fig. 6. This figure shows a time series for the x-direction velocity of a ball (Vx) in case 2 
(four-seam fastball), and three rollers exhibited 1.67 revolutions. As a result, when the ball 
came into contact with the rollers, the velocity of the ball suddenly increased.  

Conversely, it is understood that a pitched ball maintains a contact speed after its release 
without regard for value of . For this reason, the ball is in a slippery state during the early 
stages of its contact with the rollers, and contact time changes with changes in the value of . 
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In the moment that the rollers pitches to hold the ball, the contact state of the ball and rollers 
almost becomes an adherence state in the whole area. Therefore, the ball's course does not 
vary with the value of . From the results, the coefficient of friction  was determined to be 
0.5 (Sakai et al., 2007, Nicholls et al.,2004). 

 
Figure 7. Shear stress distribution in x-y section of a pitched ball. a) No-spin ball. b) Fastball. 

4.3. Analysis results and discussion 

One example of the analysis results, the shear stress distribution in an x-y section of a 
pitched two-seam ball is shown in Fig. 7. In the figure, (a) and (b) show the pitch of a no-
spin ball and fastball, respectively. It is understood that the absolute value for the fastball 
is more than the no-spin ball. For this reason, the number of turns of the N1 roller is faster 
than other rollers in order to add back spin to a ball for the fastball. The shear stress 
values in the occurred contact surface neighborhood with the ball and the N1 roller 
therefore becomes high. 

A time series of the ball's x direction velocity Vx, when the two-seam ball was thrown by the 
three pitch types (no-spin ball, fastball and curveball) is shown in Fig. 8. The velocity-time 
curve was almost the same for all the pitch types. The ball's velocity suddenly rises when 
the ball begins to come into contact with the roller, and is pitched at an almost constant 
speed after release. However, while not shown here, this is almost the same as the other 
pitch types and different seam postures. The speed of a pitched ball was understood not to 
be influenced by the pitch type. Additionally, when the number of a roller is n, the outside 
radius of a roller is R (m), the relationship between the number of revolutions of each roller 
Ni (min-1) and the ball's speed V (m/s) can be given by the following equation:  
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Figure 8. Time series of ball velocity Vx in two-seam ball during release 

 

 
Figure 9. Flight behavior of ball after release using high-speed video camera in Case 2 (Fastball, V = 25.1 
m/s. 

 

 
Figure 10. Flight behavior of ball after release by FEA result in Case 2 (Fastball, V=24.7 m/s). 
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4.4. Comparison of results of throw experiment and analysis 

The three-roller type pitching machine shown in Fig. 2 was used, and it was tested to throw 
a ball in the throw condition shown in Table 2. The state of the throw experiment filmed the 
behavior of the ball just after release at intervals of 2000 fps (frames per second) using a 
high-speed video camera (MEMRECAM fx-K3, made by nak Image Tech. Inc.). One 
example of the throw experiment results, a flight image of the pitch of a four-seam fastball, 
is shown in Fig. 9 (Nicholls et al., 2003, Chu et al., 2006, Sakai et al., 2007, Takahashi et al., 
2008). As well, a state of the flight of the FEA that pitches the ball in the same condition in 
Fig. 10 is shown.  

From both figures, the spin axis of the ball is the axis which is inclined to wards the Z-axis 
(side of a paper plane) from the vertical direction. It is understood that the ball is pitched 
spinning around its axis. The speed of the pitched ball V and spin rate S were calculated 
from both images. The experimental and analytical values were almost the same. 
Additionally, similar results were acquired in the experiments and the simulation (FEA) of 
other pitch types and seam postures. These results showed good agreement between the 
experiments and the FEA.  

Figure 11 shows the comparison of the spin rate S of each pitch type when we threw a ball 
with two- or four-seams in the experiments, as well as the analysis results. The spin rates of 
the experiment and analysis values are understood to be almost the same in both pitch 
types. Additionally, a pitch type is decided by the number of turns of the three rollers. It is 
understood that there are few differences associated with seam posture (Jinji, 2006). 

 
Figure 11. Spin rate of ball after throw for three pitch types. 

Figure 12 shows the comparison projection horizontal angle  after a throw of each pitch 
type. From the results, it is understood that the experiment and analysis values are different 
by pitch type and seam posture. In this case, the analysis and the experiment values were 
each compared with each seam posture (two- and four-seam), and the absolute experimental 
value was slightly greater than the analysis one within the three pitch types. Also, it is 
understood that both values become almost equal with minor differences.  
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Figure 12. Horizontal angle  of ball after throw for three pitch types. 

Conversely, the difference in value between the two- and four-seam balls in the experiment 
was from 0.3 to 0.4 degrees for each pitch type. Here, in this throw condition (the initial ball-
velocity 25m/s), when a difference of  was 0.2 degrees, the trajectory of the pitched ball to a 
home plate is about 70mm (the size of one ball) slip off in the side direction in theory. This 
difference is thought is a significant factor contributing to the fall in throw accuracy by the 
seam of a ball for baseball (Frohlich, 1984, Mehta, 1985, Watts et al., 1975, Mizota et al., 1995, 
Alaways et al., 2001).  

From the results of the throw experiments and simulations, the value of the speed, spin rate 
and projection angle in the pitched ball are almost the same. It is thought that the analysis 
model and its results are proper.  

5. Analysis of models that changed roller outer diameter, D 

5.1. Analysis models and conditions 

The roller outer diameter  320mm (standard model; D320) for the present experiment was 
changed, the analysis models of  220mm (D220) and  420mm (D420) were made the roller 
of the small and large diameter. Both the analysis models are shown in Figs. 13 and 14, 
respectively. Here, the roller materials and roller distance are the same as the analysis model 
in the previous section.  

In the analysis conditions, the speeds and pitch types of the pitched balls are the same as in 
the standard model D320. The circumference velocity VRi of each roller was calculated from 
the number of each roller turns as shown in Table 2.  

Next, the number of each roller turn Ni (min-1) was calculated so that VRi in the case of D220 
and D420 became equal. Both the models were set to the number of those turns. 
Additionally, the initial velocity of the ball was the same as stated in the previous section, 
and the throw analysis was then carried out. 
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Figure 13. Finite element models of small rollers (D220). 

 
Figure 14. Finite element models of large rollers (D420). 

5.2. Results and discussion 

One example of the analysis results, the time-history of a two-seam fastball's velocity for 
each model, is shown in Fig. 15. The number of three rollers turn of each model increased to 
1.67 times (ex. D220H), is shown in the same figure. As shown in the figure, there is a small 
difference in the time at which the ball comes into contact because each roller's the diameter 
was different. A similar velocity-time curve is drawn for all the models.  

X 

Z 

Y 

φ
22
0

N1 

N2 N3 

[Unit: mm] 

φ
4
20N1 

N2 
N3 

X 

Z 

Y 

[Unit: mm] 



Optimization and Improvement of  
Throwing Performance in Baseball Pitching Machine Using Finite Element Analysis 309 

Otherwise, the speed of a pitched ball after the throw was almost constant in all models. 
This is not shown here. This result was identical to when a four-seam ball was thrown. The 
ball speed was decided almost entirely by the circumference velocity of the roller, and 
clearly does not depend on the roller's outer diameter.  

Figure 16 shows the comparison of several rollers on the spin rate in two-seam balls. The 
spin rate of the pitched curveball in D220 is compared with other models that are slightly 
lower. It is understood that the spin rate in D320 and D420 is almost equal for all pitch 
types. The spin rate is an important factor in deciding a pitch types (breaking balls), because 
the throw performance of the D220 is lower in comparison with other rollers.  

  
Figure 15. Time series of ball velocity for two-seam fastball during release on several rollers D. 

 
Figure 16. Comparison of several rollers on spin rate of two-seam ball. 
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Next, throw accuracy by seam posture was evaluated quantitatively. A difference of a 
vertical and horizontal projection angles  and  after a ball is thrown is defined as  and 
 in the next two equations, respectively:  

 2 4      (3) 

 2 4      (4) 

where the suffix 2 or 4 expresses two- or four-seam balls, respectively. If the values of  
and  are small, the throw accuracy of the pitching machine is higher with respect to the 
seam position and posture.  

 
Figure 17. Comparison of several rollers on  

 
Figure 18. Comparison of several rollers on  

Figures 17 and 18 compare  and  for each model when pitched respectively for each 
pitch type. In the case of the fastball pitch, in comparison with other pitch types, it is 
understood that its value in all models is the largest. In the case of the compared models, the 
value of  in D220 is bigger for all pitch types, and it is understood that D320 and D420 are 
smaller. Conversely, the value of  in the curveball tends to become slightly larger than 
other pitch types without relation to the model.  is smaller, so the roller diameter becomes 
bigger. Additionally, it is understood that there is not any difference in D320 and D420.  
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From the results of the throw analysis where the roller diameter D was changed, the spin 
performance and the throw accuracy are poor in D220 and the outer diameter is small. It is 
understood that the performance of D420, with the largest outer diameter, was the best.  

In general, a roller with a big diameter is used, a motor capable of producing a large output 
becomes necessary. In this case, the pitching machine in itself becomes large-scale, and its 
gross weight increases. However, if such problems can be solved, in terms of throw 
accuracy, it is advantageous to make the diameter of the roller larger.  

When these things are considered generally, there are a few differences regarding the throw 
performance of the D420 and D320. The roller diameter of the three-roller type pitching 
machine is regarded as the measurement that used 320mm present are practical. 

6. Analysis of models that changed radius of roller distance, r 

6.1. Analysis models and conditions 

A roller-type pitching machine is a machine in which a ball is picked up by the roller, and is 
thrown. The performance of roller-type pitching machines changes based on the radius r of 
each roller. Thus, the roller distance of the present machine (D320, radius r =25.1 mm) was 
as shown in Fig. 19. The roller distance of the models was analyzed which may have been 
narrow or broad. Also, the throw analysis was the same as in the previous section.  

 
Figure 19. Radius of each roller distance, r a) Ball and three rollers. b) Close-up view. 

6.2. Results and discussion 

One example of the analysis results, the velocity of two- and four-seam fastballs of each 
model, is shown in Fig. 20. In this figure, the ball speed is understood to not be influenced 

(a) (b)
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by the seam posture in any of the cases. Additionally, the speed of the pitched ball is fixed at 
about 25m/s within the range of 23.1mm < r < 27.1mm. The speed rises with increases in r, 
and the greatest speed was approximately r = 31.1mm. The ball speed suddenly decreases 
when r > 31.1mm. It is thought that the ball is not held strongly enough between the rollers 
when r > 31.1mm. Figure 21 shows the relationship between  ,  and r from the analysis 
results. It is understood that  is at its minimum value at 0.19 degrees when r =33.1mm, 
and  is moves towards its minimum value at 0.10 degrees when r = 27.1mm.  

From these results, when the speed of a pitched ball thrown from a three-roller type 
machine is considered, it is thought that the radius of a roller distance r in the range of 
23.1mm < r < 33.1mm is practical. If r is limited to this range, the throw accuracy becomes 
highest at approximately r = 27.1mm when  and  are both at their minimum values.  

 
Figure 20. Relationship between ball speed and of each roller distance, r. 

 
Figure 21. Relationship between  ,  and of each roller distance, r. 
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In theory, the control accuracy of the pitched ball by a pitching machine in this case is 
entered in the vertical and horizontal errors at 140mm and 50mm, respectively. Therefore, 
the measurements needed to create a new type of pitching machine have been achieved. 
(Mizota et al., 1995, Himeno, et al., 1999, Nathan, 2008). 

7. Throw analysis changed roller shape 

7.1. Analysis models and conditions 

In order to throw a two- or four-seam ball, it is necessary to prepare the posture of the ball 
artificially. Thus, the roller developed by us shows that the throw accuracy is not affected by 
a seam and its posture (the robustness roller). We let the shape change in the roller section. 
Above, the roller section used was a flat type roller (flat roller) of a rectangle. For the 
concave type roller the central part of which where the ball touched became hollow (see Fig. 
22), while the convex type roller which swelled (see Fig. 23) were devised. The radius of 
curvature R=100mm, and the distance from the center to the outside surface of the roller (the 
radius of each roller distance) was r=25.1mm in both models.  

 
Figure 22. Concave type roller. a) roller shape. b) Close-up view.  

7.2. Analytical results and discussion 

The analytical results of a pitched fastball are shown in Figs. 24, 25 and 26. Figure 24 shows 
a time series of the two-seam ball's velocity. The velocity-time curve was almost the same 
for all roller types. The ball's velocity suddenly rises when the ball begins to come in contact 
with the roller, and is pitched at an almost constant speed after release. However, while not 
shown here, this is almost the same as other pitch types and different seam postures. The 
speed of a pitched ball was understood not to be influenced by the roller shape.  
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Figure 23. Convex type roller. a) roller shape. b) Close-up view.  

On the other hand, the difference of the vertical angle  (see Fig. 25) and horizontal angle 
 (see Fig. 26) with several rollers in the fastball pitch changed based on seam posture and 
roller shape dramatically. In both figures, it is understood that the variation in the range of 
the convex type roller by seam posture was smaller than the other roller types. Here, the 
value of difference of both seams (two- and four-seam) was small, meaning that the throw 
accuracy is higher.  

 
Figure 24. Time series of the ball velocity with several rollers for two-seam fastball. 
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In particular, the value of difference of horizontal angle  becomes a factor of a pitch which 
hits the batter in an actual baseball game. Therefore, the value of  of a commercial 
pitching machine is an important factor in the throw accuracy. The throw accuracy of the 
convex type roller is higher than the flat and concave type rollers.  

 
Figure 25. Difference of vertical angle  with several rollers for three pitch types. 

 

 
Figure 26. Difference of horizontal angle  with several rollers for three pitch types. 

8. Optimum design of roller 

8.1. Optimization problems of roller 

From the results in the previous section, when the roller shape is changed into convex from 
a flat design, the throw accuracy may become higher than the existing the flat type roller. In 
this section, the dynamic finite element analysis (FEA) is used, and the optimum design of 
the roller improving the throw accuracy is tried. Young's modulus E of the roller, the radius 
of curvature R and the radius of each roller distance r are the three design variables in Fig. 
23. There is the optimization problems in designing rollers that have a different projection 
angle formed by differences in the seam posture becoming the smallest.  
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8.2. Response surface method and optimization 

In order to obtain the optimum design, as evaluation of the roller optimization 
corresponding to the design variables, a difference of the projection horizontal angle () 
according to the two- and four-seam postures was decided upon. Objective function f uses a 
difference of an argument regarded as most important to the throw accuracy. f is 
minimized so that the effect of the seam becomes small, as in the equation given below:  

 Minimize f      (5) 

where  is a penalty coefficient. In the case of minimal spin rate S (min-1), not all pitch types 
are thrown. Thus, this consideration was removed from the optimum solution. It is 
prescribed in the next condition: 

 2 4

2 4

400 400 0
400 400 1

S and S
S or S




    
    

 (6) 

where 2 and 4 indicate the two-seam and four-seam, respectively. Eq. (5) is derived by using 
Response Surface Methodology (Myers et al., 1995, Khuri et al., 1996). The response surface 
is built by using a response surface tool: RSMaker for Excel (Todoroki, 2010). The response 
surface dispersion is shown in the standard three design variables (R, r, E) in Table 3. All 
analyses for 3×3×5 (45 ways) in Table 3 were executed. Additionally, the pitch type decided 
on was the curveball, because the change of the projection horizontal angle  is the biggest 
over the other pitch types from the analytical results in the previous section. 
 

 
Table 3. Design variables (1st analysis). 

 

 
Table 4. Design variables (re-analysis). 
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From the results, many peaks are recognized by the provided response values, and it was 
difficult to provide similar accuracy in all design domains. Thus, the response surface by the 
interpolation calculation was made, and the optimum point candidate was predicted. One 
example of the response surface made in interpolation calculation using the graph software 
ORIGIN is shown in Fig. 27 (E=50MPa). It is predicted that the optimum point for r=25mm 
and R=100mm. It is observed once again in the surrounding region that the zoomed 
response surface is made, and the optimum point is found in the small region. In the re-
analysis, R was fixed at 100mm, the design variables were the two r and E (cf. Table 4). The 
reason for this is because sensitivity for the objective function was sensitive both to r and E 
in the range of R>72mm. 

 
Figure 27. Response surface of interpolation calculation for curveball (E =50MPa). 

The enlarged response surface demanded by the third multinomial expression 
approximation and the optimum point (seal ○) are shown in Fig. 28. In this way, the 
optimum condition of the convexity roller (r =25.4mm, E =52.4MPa) was pursued. 
Additionally, the re-analysis was executed in these conditions once again, and it was 
confirmed that these values are the optimum values. From Fig. 28, it is understood that the 
optimum point neighborhood is a gentle curved surface and range. 

Next, when the pitch type was changed mid-pitch from a fastball to a curveball, roller 
geometry was optimized such as for the curveball. The zoomed response surface for the 
fastball is shown in Fig. 29 (seal ○ is the optimum point in the curveball). The changed 
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values of both design variables are small in comparison with the curveball. Also, the 
optimum point was almost the same as the value pursued in the curveball. 

 

 
Figure 28. Zoomed response surface and optimum solution for curveball (R =100mm) 

We think that the optimum value provided by the curveball is close to the optimum value of 
other pitch types. 

8.3. Throw experiment using optimized convex type roller and throw accuracy 
evaluation 

In the previous section, the optimum condition of the convex type roller was decided. The 
proprieties of these analysis results are examined. The convex type roller pursuing the 
optimum condition has been produced, and the pitching machine using its rollers was 
tested to throw the ball. The convex type roller produced the shape geometry that is the 
radius of curvature R=100mm and rubber as a soft material (Young's modulus, E =52MPa). 
This is called the soft convex type roller. In Fig. 23, it was a set of three of these rollers, and it 
was adjusted to become the center distance r=25.4mm.  

The state of the throw experiment filmed the behavior of the ball just after release at 
intervals of 2000 fps using the high-speed video camera. For comparison of the roller shape, 
the produced soft convex type roller was filmed. The throw condition was experimented on 
in the same way as the analysis shown in Table 2, in order to compare it with the FEA.  
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Figure 29. Zoomed response surface and optimum solution for fastball (R =100mm) 

 
Figure 30. Flight behavior of ball after release using high-speed video camera for four-seam curveball 
by convex roller (V=25.3 m/s, S=820min-1). 

 
Figure 31. Flight behavior of ball after release by FEA results for four-seam curveball by convex roller  
(V=24.9 m/s, S=810min-1). 
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One example of the throw experiment results with the soft convex type roller, a flight image 
of the pitch of a four-seam curveball, is shown in Fig. 30. Otherwise, a state of the flight of 
the FEA that pitches a ball in the same condition in Fig. 31 is shown. From both figures, the 
spin axis of the ball is the axis which is inclined to the Z-axis (side of a paper plane) from the 
vertical direction. It is understood that the ball is pitched spinning around its axis. The 
speed of a pitched ball V and number of spins S were calculated from both images. The 
experimental and analytical values were almost the same. Additionally, similar results were 
acquired in the experiments and the simulation (FEA) of other pitch types and seam 
postures. These results show good agreement between the experiments and the FEA. 

Figure 32 compares the roller geometry of the experiment and analytical values of the balls' 
speed V for the two pitch types (fastball and curveball) using the four-seam ball. It is 
understood that the balls’ speed in the convex type roller increases a little more than in the 
flat type roller without a relation to pitch types. Its velocity increases by about 3%. These 
results are the same as the former FEA results (cf. Fig. 24). 

 
Figure 32. Comparison of roller geometry on ball speed V for four-seam ball after pitching. 

 
Figure 33. Comparison of roller geometry on the difference of horizontal angle    
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Additionally, the experiment and analytical values were compared for roller geometry. The 
experimental and analytical values were almost the same. It was identified that the 
reproduction of the throw of the ball was experimented on several times.  

On the other hand, the difference of the projection horizontal angle ( ), which is one of the 
important performance considerations of a pitching machine, was considered in order to 
evaluate the throw accuracy of the machine by the seam posture quantitatively. If the value of 
 is small, the throw accuracy of the pitching machine is higher with respect to the seam 
position and posture. The fastball and curveball were thrown using the two- and four-seam 
balls, respectively, and the projection horizontal angle  was measured for each pitch type. The 
throw experiments were tested with two kinds of rollers of the flat and soft convex types.  

Figure 33 shows the difference of  values which were calculated in Eq. (4) from the values 
measured in these experiments. The values of the FEA in the throw condition are the same 
as the experiment shown in the figure. The values of the experiments were compared with 
the roller shape. The convex type roller showed smaller values than the flat type regardless 
of pitch type. The convex type roller was affected by the improvement in throw accuracy.  

Finally, the analysis accuracy was described. In Fig. 33, each ball type is shown, and the  
of the analysis and experiment are compared, respectively. This included some errors which 
the experiment values (less than 0.07 degrees) considered. It is thought that the analysis 
accuracy is high enough. From these results, the validity of the computational model and its 
results in this study were confirmed. 

9. Conclusion 

In this chapter, the throw simulation using the finite element analysis (FEA) and 
experiments analyzed the improvement in the throw accuracy of three-roller type pitching 
machines for the purpose of studying the effect of the seam on the behavior and throw 
accuracy of the ball. The analytical models of the changes in the outer diameter, the 
distances and the form of the roller were made. The roller based on the convex shape was 
suggested, and the materials and the shapes of its roller were optimized. Additionally, 
throwing the ball using its optimized roller was experimented on, and the propriety of the 
analysis results was inspected. The conclusions provided are as follows: 

1. In the roller type baseball pitching machine, the seam of a ball does not influence the 
ball's speed or spin rate after release, while the effects of the seam on the projection 
angles θand φ vary. 

2. The throw accuracy of the three-roller type pitching machines was improved through 
the utilization of a larger roller diameter. 

3. In the case of the flat roller, the radius of the three-roller distance is 27.1mm, the seam of 
a ball increase, and the throw accuracy of the pitching machine is improved. 

4. The soft convex type roller (R=100mm and E=52.4MPa), which is the optimized roller, 
does not have an affect on the seam of a ball, and the throw accuracy and robust are 
high. 
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1. Introduction 

Thin-wall workpieces are usually low rigidity and complex shapes, which results in great 
challenges in machining. The machining accuracy, both geometric accuracy and surface 
integrity, plays a significant role in achieving overall product’s functional performance. 
Machining is a key process since it is easy to result in deflection and chatter[1, 2]. In stable 
machining, surface dimensional error due to the workpiece deflection affects machining 
precision[1, 3]. In unstable machining, the chatter becomes a critical problem for high 
surface quality. Currently, the existing methods for predicting the cutting forces, deflections 
and stability can be divided into experimenting and modeling. The direct trial-and-error 
approach is often expensive and time consuming. Producing the right profile in such parts 
increasingly depends on specialized CAD/CAE/CAM packages for defining appropriate 
cutting strategies and tool paths[4-7]. However, most of the existing techniques and models 
are based on idealised geometries and do not take into account factors such as variable 
cutting force, part/tool deflection, machining stability[8].  

In many cases, the parameters of milling system are uncertain derived from the 
measurement errors, system nonlinear behavior, use or not use of coolants and other 
environmental noise. In addition, the stability boundaries are highly sensitive to the milling 
system parameter uncertainties. Therefore it is questionable that the usefulness of stability 
Lobes for estimating the milling stability obtained by applying deterministic parameters. 
Nominal machining parameters from the deterministic machining parameters optimization 
cannot guarantee the stability of milling process and lead to an actual maximization of 
material removal rate(MRR) and minimization of surface location error (SLE1). In practice, 
                                                                 
1 Surface location error is defined as the error in the placement of the milling cutter teeth when the surface is generated. 
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the cutting forces that statically and dynamically excite the tool and part, reducing the 
validity of the CAD/CAE/CAM output and leading to additional machining errors. For 
example, it induces chatter and large deformation in thin-wall workpiece, and very high 
cutting temperature which causes excessive thermal expansion specifically under dry 
machining conditions. Finite element analysis (FEA) has been widely adopted in numerical 
simulation of the machining process. FEA-based simulation, considering physical factors, 
such as material properties, tool geometry etc., is required to accurately predict the 
deflection and stability. Normally, the aim of cutting parameters optimization is to improve 
the part quality, maximize MRR and the constraint conditions are to keep the spindle speed 
below a predifined one and require the cutting process stable.  

The cutting force and the part deflection are usually solved by an iterative simulation 
algorithm. Wang et al[9] studied force-induced errors, and developed a quasi-static error 
compensation method. Law et al.[10] calculated the cutting force from the measured milling 
torque, and integrated both the force and deflection models to develop a compensation 
methodology. However, currently the force modeling research has been mainly focused on 
theoretical rigid force models or mechanistic force models [11]. Budak and Altintas[12] 
considered the peripheral milling of a very flexible cantilever plate that incorporate a 
mechanistic force model and finite element methods. Feng and Menq [13, 14] developed a 
cutting force model taking into account the engaged cut geometry, the undeformed chip 
thickness distribution and the effect of the cutter axis offset. Budak et al.[15] proposed an 
oblique cutting mechanics model, in which the oblique cutting force are obtained from 
orthogonal cutting force. Ratchev et al.[16] proposed a flexible force model to study the tool 
deflection based on an extended perfect plastic layer model. They considered the end-
milling cutter as a cantilever with the force acting at the cutter tip centre position[11]. 
However, the dynamic effect and the generated heat during machining were not considered, 
and the tool and the workpiece were assumed to deform to their static equilibrium position 
at any milling instant[1, 17]. Spence et al.[18] indicated that most existing machining 
simulation techniques were geometric and ignored the physical aspects of the process. 
Therefore, for making an appropriate choice of the cutting parameters and the operation 
sequence, deep understanding of the induced cutting deformation and the heat transfer is 
necessary. In the recent past, various techniques have been developed for studying the 
force- and temperature-induced aspects of machining, but separately. There is still a lack of 
a comprehensive milling simulation model which, taking into account the effects of the tool-
path, and the cutting variables, simulates the thermomechanical aspects of machining[19]. 
Their applicability to model force in machining of thin-wall workpiece is limited due to the 
variability of material properties, cutting force, non-linear dependency on tool immersion 
angle and chip thickness[11]. Increased attention is being focused on the development of a 
computationally efficient milling process model, well capable to perform thermomechanical 
analysis of the metal cutting process.  

Although there are many mechanisms of instability or chatter as mentioned in Wiercigroch 
and Budak[20], instability due to regeneration of surface waviness is by far the primary 
cause of instability. The stability analysis of the milling system can be performed only by 
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applying approximated numerical methods since there is no closed solution to time-delay 
differential equation of milling dynamics. Alternatively it can be carried out by means of 
time-domain simulations[21], in the frequency domain[22] or by applying methods based on 
delay differential equation theory, such as the semi-discretization method[23] and the time 
finite element approach (TFEA)[24]. Budak and Tekeli[25] proposed a method to determine 
the optimal combination of depths of cut, so that chatter free material removal rate is 
maximized, with application on a pocketing example and significant reduction in the 
machining time is obtained. Altintas and Merdol[26] developed a generalized process 
simulation and optimization strategy for increasing MRR while avoiding machining errors 
and considering the chatter, and spindle's torque or power limits. However, the works of 
milling stability and cutting parameters optimization were addressed little to take into 
account the parameters uncertainties. Duncan et al.[27] used the Monte Carlo method to 
determine the associated uncertainties in the stability limit at each spindle speed. However 
the estimated stability intervals are too large to supply a useful advice to the parameters 
selection in an actual milling process. Kuidi[28] studied the robust optimization of SLE and 
MRR in milling process with uncertainties. The deterministic optimization formulation was 
modified to account for the axial depth uncertainty. But the uncertainties of Lobe diagram 
and SLE, which determine the milling stability and part quality were not taken into account. 
And the detailed optimization procedures are absent. Totis[29] used a new probabilistic 
algorithm for a robust analysis of stability in milling process, which performs the stability 
analysis on an uncertain model. The main objection to the general use of probabilistic 
analysis techniques is that non-deterministic properties cannot always be exactly 
represented using the probabilistic concept. Indeed, probabilistic methods cannot deliver 
reliable results unless sufficient experimental data are available to validate the assumptions.  

In this chapter, we describe the force and temperature-induced error prediction and stabilty 
analysis of milling process by using the finite element method. Firstly a thermo-mechanical 
analysis is established to predict the force- and temperature-induced deflection. Then, TFEA 
is adopted as the deterministic model to obtain SLE and milling stability Lobe diagram. The 
uncertainties of modal shape parameters of spindle-tool system are investigated and 
sensitivity analysis is used to evaluate the upper and lower bounds of SLE and stability 
Lobe diagram. Finally, the formulation of robust spindle speed optimization is given to 
minimize the maximal SLE in a milling process and constraint condition is to maximize 
spindle speed and keep the machining parameters below the lower bound of Lobe diagram. 
With two optimization results, derived from robust and deterministic optimization 
formulations, experimental verifications are given.  

2. Flexible thermo-mechanical model for error prediction 

The surface error is induced by the deflection of tool and workpiece. Most of the existing 
techniques are based on idealized geometric profile and do not take into account 
tool/workpiece deflection, which results in a significant deviation between the planned and 
machined workpiece profiles[11]. This chapter focuses on deflection of thin-wall workpieces 
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induced by cutting force and temperature. Reliable quantitative predictions of the cutting 
force and temperature components are essential for determining geometric errors of 
machined workpieces. Force predictions are required for arriving at constrained 
optimization strategies in computer-aided process planning[15].  

2.1. Flexible force model for thin-wall workpiece 

The research in the area of cutting covers a very wide range, since there are many 
independent influencing factors, including the cutting parameters, material properties, 
properties of the machine–tool–workpiece system, and tool geometry. A general model for 
the determination of cutting forces in ball-end milling operations was presented in 
reference[30]. The mathematical model represents the relations between the cutter and the 
workpiece, the change of chip thickness and the milling cutter rotation angle. The cutting 
forces are divided into several parts which depends on the number of cutting edges, cutting 
edge length and milling cutter rotation angle. Figure 1 shows the schematic diagram of a 
cutter of a ball-end milling and its configuration parameters.  

 
Figure 1. Constant lead spiral cutting edge for ball-end milling 

The following is the main idea how to calculate it [31, 32]. The lag between the tip of the 
flute at 0z   and at axial location z  is[30] 

 0
0

tanz i
R

   (1) 

where, 0R  is the radius of the hemispherical part, 0i  is the helix angle of the cutting edge. A 
point on the flute j  at height z  is referenced by its angular position in the global coordinate 
system, 

 2( ) ( 1)j
f

z j
N
       (2) 

where fN  is the number of flutes,   is the tool rotation angle. 
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The angle position in the direction of z-axis from the center of the hemispherical part to the 
point on the cutting edge can be written as 

 

 
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 (3) 

The tangential, radial and binormal components are calculated as[15, 32, 33], 
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 (4) 

where, ( , , ) sin sinn zbt f      is the uncut chip thickness normal to the cutting edge,  
and varies with the position of the cutting point, tcK , rcK , acK ( 2/N mm ) are the  
shear specific coefficients, teK , reK , aeK ( /N mm ) are the edge specific coefficients.  

 2 2 2 2
0 0'( ) ( ) cotdS R R R i d      ( mm ) is the length of each discrete elements of the  

cutting edge, zbf  is the feeding per tooth, arcsin( ( ) )bR R   , and db  ( mm ) is the 
differential length of cutting edge. In many mechanistic models for the milling process, the 
milling force coefficients tcK , rcK , acK , teK , reK , aeK are established from specially devised 
milling tests (e.g. average cutting force coefficient model) followed with linear regression 
analysis. Usually there are two methods to predict the parameters which are mechanistic 
evaluation and prediction from an oblique cutting model[15].  

The cutting forces in Eq.(4) are modeled in terms of two fundamental phenomena, an edge 
force component due to rubbing or ploughing at the cutting edge, and a cutting component 
due to shearing at the shear zone and friction at the rake face[15]. The cutting force model 
including explicitly the ploughing component can obtain more precise prediction accuracy. 
Once the tangential ( , )tF z , radial ( , )rF z , and axial ( , )aF z  cutting force at the tooth-
workpiece contact point are determined, the resultant forces in Cartesian coordinates are 
obtained by introducing the transformation matrix[32], 
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Then one can get [32] 
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Since the cutting force coefficients ( tcK , rcK , acK ) may be dependent on the local chip 
thickness, the integrations given above should be calculated digitally by evaluating the 
contribution of each discrete cutting edge element at dz  intervals. There are many models to 
calculate the coefficients, such as bi-linear force model, exponential chip thickness model, 
high-order force model, and semi-mechanistic model. Budak et al[15] presented the cutting 
transformation model.  
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where,   is shear stress at the shear plane, n  and n  are normal shear and friction angles 
in oblique cutting respectively, n  is normal rake angles, c  is chip flow angle in the rake 
face,   is friction angle at the rake face. For example, when Cutter radius is 3mm, Feed is 
0.02mm/rev, Depth of cutting is 0.02m, the cutting force can be calculated as Figure 2.  

 
Figure 2. Predicted cutting forces for slot cutting tests 

Most of reported papers in the area of cutting force- induced error belongs to those caused 
by large deformation of thin-wall workpieces under load[34, 35]. Peripheral milling of 
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flexible components is rather complicated due to periodically varying cutting-forces. These 
forces statically and dynamically excite the tool and workpieces, which leads to significant 
and often unpredictable deflections. Static deflections produce dimensional profile errors, 
and dynamic displacements lead to poor surface finish quality and machining stability 
problems in addition to dimensional profile errors[16, 36]. In the known condition of cutting 
force, the deflection of the thin-wall workpiece can be calculated through finite element 
analysis in real time.  

There are two kinds of force model, theoretical rigid force model and adaptive theoretical 
flexible force model. High complexity is associated with modeling of cutting forces in 
machining due to the variable tool/workpiece deflection and changing tool immersion 
angle. To address this complex dependency an interactive approach integrating an extended 
perfect plastic layer force model is adopted to link force prediction with workpiece 
deflection modeling[8]. The predicted profile of the workpiece is utilized to identify the 
“real” material volume that is removed during machining, instead of the “ideal” one 
defined by the “static” NC simulation packages [11]. In milling a thin-wall workpiece, the 
differential cutting force on the engaged infinitesimal tool cutting edge varies with the 
cutting depth that is effected by workpiece deflection[17]. The force is calculated by taking 
into account the changes of the immersion angle, φ, of the engaged teeth. As soon as the 
deflection, yu  and the coordinate (x, y, z) of point, a, are known (Fig. 4), the instant 
immersion angle   in milling after deflection can be calculated using[1]  

 1 ( ( , ) ( , ))
( , ) cos r yR h z t U z t
t z

R


 
   (10) 

where R  is the cutter radius, and rh  is the designed milling depth in the workpiece 
thickness direction, while yu  is the deflection in the corresponding point predicted through 
FEA. Ratchev et al[3, 11] proposed a flexible force model for machining dimensional form 
error prediction of thin-wall components. Here, the thermal deflection is introduced into the 
the flexible force model to consider the temperature effects. 

FEA softwares are used to calculate the deflection caused by the cutting force at each 
sampling point through the following equation, 

    K U F     (11) 

where K    is the stiffness matrix of the workpiece,   , ,
T

x y zU U U U     and 

  , ,
T

x y zF F F F     are nodal displacements of workpiece and the external cutting force 

acting on the tool-workpiece transient contact surface, respectively. As the boundary 
conditions are specified, the nodal displacements can be obtained through solving the 
above equations.  
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2.2. Thermo-mechanical analysis for thin-wall workpiece 

The errors are usually caused by excessive deformation at the interface due to the cutting 
force and temperature, so they have to be considered simultaneously. With the recent 
developments in machining automation, various cutting temperature measurement 
techniques, including tool-work thermocouple, embedded thermocouple, and infrared 
pyrometer, emerged[37-41]. The aforesaid experimental techniques have been widely 
applied in machining due to its simplicity. Lin[42] and Kwon[43] studied the transient 
interfacial temperature and heat dissipation in the workpiece during a slot milling process. 
Fang and Zeng[44] utilized FEM to develop a 3D model of the oblique cutting process for 
the prediction of temperature distribution in the workpiece, tool and chip. Temperature 
distribution in the workpiece was estimated for a simple single pass slot milling operations 
in only a few reported works[45, 46]. However, these studies ignore the structural analysis 
for predicting part deformations under coupled thermomechanical loading conditions.  

The milling techniques still face to a severe problems of inducing very high cutting 
temperatures causing excessive thermal expansion of the workpiece, especially in dry 
machining. The cutting parameters, namely, cutting speed and feed rate, have the greatest 
influence on the cutting temperature. For analyzing the phenomenon of heat dissipation into 
the workpiece and its influence on part deformation, a 3D model of the transient milling 
process was developed based on commercial FEM program, such as Abaqus, Ansys and 
Comsol. These systems allow: (1) creating 3D FEM models of the fixture–workpiece 
configurations, (2) applying appropriate materials for the workpiece, (3) applying 
appropriate machining boundary conditions, and (4) performing transient thermal and 
structural analysis where the transient temperature distribution profiles are applied along 
with the cutting forces to predict part deflections.  

If the thermal conductivity ( K ) and heat capacity ( pC ) of the work material is higher, then 
the generated heat is more readily conducted into workpieces and causes thermal 
expansions which produce severe irregularities. The cutting force more easily induces large 
deformation in the workpiece. In return, the deformation resulted from the cutting force and 
the generated heat will change the cutting parameters. However, most models are based on 
idealized geometries and do not take into account the factors, such as variable cutting force, 
thermal load, part/tool deflection, etc[1]. Before calculating the temperature distribution, 
cutting temperature at the interface need to be predicted. For speed-, and feed-dependent 
boundary conditions in machining, the thermal source problem in machining thin-wall 
workpiece is very difficult to be solved analytically. Therefore, the temperature prediction at 
the interface is usually achieved by non-linear empirical modeling approaches. The average 
interface temperature, as measured by the tool-work thermocouple, is[47] 

 0.5 0.2 0.4
, ( ) 1700avg interfaceT C V d f   (12) 

where V  is cutting speed (m/s), d  is depth of cut (mm), and f  is feed (mm/rev). The above 
empirical model of the interface temperature is developed for turning of 4140 Steel alloy 
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with tungsten carbide tools. The relation of cutting temperature and feed is plotted in Fig.3 
where the temperature at the interface is very high. 

 
Figure 3. Cutting temperature versus cutting feed, depth of cut 0.763mm, cutting speed 3m/s 

The temperature variations are related to the heat source movement, heat source intensity, 
and thermal resistance coefficient. The fundamental generalized problem to be solved 
analytically is the heat conduction in a thin infinite plate with a convective and radial 
boundary condition on the face. The time-dependent heat transfer process is governed by 
the following differential equation[48], 

 
2

2
( , )1 1g r tT T TT

r r k tr



  

   
 

 (13) 

where, h kw  , h  is the convection coefficient of heat transfer, k  is the thermal 
conductivity of the material, w  is the plate thickness,   is the thermal diffusivity of the 
material, and ( , )g r t  is the internal heat generation rate per unit volume, the variable r  is 
the radial distance from the heat source. 

 
Figure 4. Temperature-effected machining: (a) Top view;(b) Side view 

The dynamic non-uniform temperature distribution roots in time/position-dependent 
thermal deformations. Eq.(13) is to be solved by finite element method here. Ref. [48] 
proposed another computational methods. There are two basic thermal error modes, 
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namely, thermal expansion and thermal bending. Figure 4 is the schematic diagram of 
machining results due to temperature effects. Figure 4a-4b show the deflections from the top 
and side views respectively. It can be observed from Figure 4 that the machining 
topography will be very complex when the temperature effects are considered. In return, the 
thermal expansion and thermal bending affect the cutting force. It is a complex, back and 
forth cycle, which has to be simulated by interactive algorithm. 

2.3. Interactive algorithm for thermo-mechanical analysis 

The cutting forces depend on the chip thickness which is a function of the tool immersion 
angle. The tool immersion angle is a function of the part deflection which itself depends on 
the cutting forces[47]. The deflection is determined by the cutting force, as well as 
temperature distribution. The cutting forces depend on the chip thickness which is a 
function of the tool immersion angle, and the machining temperature is a function of the 
cutting speed, depth of cut and the feed. An iterative procedure is used to determine the 
milling error. The predicted deflection from CAE is used to identify the practical material 
volume that is removed during machining instead of the ideal one defined by CAM. The 
thermo-mechanical analysis is outlined in Figure 5. While milling a thin-wall workpiece, as 
soon as the cutter is engaged, the workpiece deflects to a new position, and the cutting 
temperature also changes at the same time. In more detail, the tool-workpiece intersection 
line can be used as an example to explain the impact on the cutting force and deflection[16]. 

 
Figure 5. Flowchart of complex surface machining based on thermo-mechanical analysis 

Although commercial FEA softwares are also used to simulate manufacturing processes, 
they cannot be solely used to simulate multi-step cutting processes of thin-wall parts. The 
main difficulty is that material removal and remeshing of part model are very complex for 
the multi-step processes, and all these FEA softwares do not integrate an appropriate 
theoretical force model for workpiece/tool deflection prediction, so varieties of models and 
software are involved[1]. There is a need to link the mainstream commercial FEA software 
with force prediction models, thermal prediction models and material removal models in 
order that data exchange among them can be achieved.  
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2.4. Error definition and thermo-mechanical deflection 

The surface dimensional error is the normal deviation of the actual machined surface from 
the desired machined surface. For example, at point P  in Figure 6, the corresponding 
surface dimensional error is , ,P t P f Pe    , where ,t P  and ,f P  are the normal projections 
of the temperature- and force-induced deflection corresponding to Point P , respectively. 
For the convenience of study, the distance between the initial surface to be machined and 
the desired machined surface is named as the nominal radial depth of cut symbolized by 

NR . In actual machining, to ensure that the surface dimensional error does not violate the 
tolerance, AR  is often specified to be different from NR ( A NR R )[3]. In this case, 

, ,P t P f Pe     has to be adjusted to the calculation of surface dimensional error 

 , ,P t P f P N Ae R R      (14) 

Note that NR  and AR  are the nominal and specified radial depth of cut, respectively. For a 
certain surface generation line, the steps adopted to calculate the error distributions can be 
found in Ref.[3].  

 
Figure 6. Definition of the surface dimensional error 

2.5. Examples of thermomechanical models 

For simplification the part is assumed to be a thin-wall rectangular workpiece. The required 
machined profile is a flat surface parallel to the plane OXY . During milling, the workpiece 
deflection in its thickness direction has a significant impact on forming the surface profile 
error. The contributions of the workpiece deflection in the feed direction and the tool axial 
direction can be ignored. Therefore, the investigations focus only on error prediction in y-
axis direction. The simulations were based on clamped-free-free-free cantilever plates with 
dimension 3150 120 5mm  and Aluminium alloy 6063 T83. The quasi-static cutting force is 
treated as a moving-distributed load acting on the workpiece-tool contact zone in the 
milling process. To compute the workpiece/tool response to the cutting force, the continuous 
machining process was simulated by multi-step cutting processes[18]. Comsol is employed 
to estimate the force- and temperature-induced deflection. 
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The input to finite element model is the chip-related cutting force and temperature, and a set 
of parameters describing material properties, boundary conditions and other constraints. In 
order to simplify the complex simulation, we employ an assumption that the instantaneous 
stiff variation due to material removal will be not taken into account. To compute the 
workpiece response, the continuous machining process was simulated by multi-step cutting 
processes. During machining, the tool moves along the machining surface. Here, we took a 
different approach that uses a moving coordinate system fixed at the tool axis. After making 
the coordinate transformation, the heat transfer problem becomes a stationary convection-
conduction problem in COMSOL. With the workpiece undergoing deformation, the cutting 
force is also changing considerably. These changes is taken into account by computing the 
cutter on a moving mesh attached to the workpiece. 

2.5.1. Machining based on a designed tool path 

The results based on the rigid force model are discussed. Supposed that the force is 
20.23 /N mm , the temperature is 1200℃, and the two loads act on the interface workpiece 

and cutter at neighborhood of 75x mm  of the workpiece. It can be noted that the 
maximal deflections are 0.348mm and 0.384mm in Figure 7-10 in the positive direction 
and 1.5mm in the passive direction, respectively. Figure 9 is the force-induced and 
temperature-induced deflection of the top edge of the workpiece. It can be observed that 
the deflections at 75x mm  in the two figures have different directions. The force-
induced deflection is along the positive direction, however the temperature-induced 
deflection along the passive direction. In reported studies, the force-induced and the 
temperature-induced deflection are investigated dividually, which will leads large error 
in machining. 

 
Figure 7. Deflection results of the rigid force model 
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Figure 8. Thermal deflection results 

 

 
Figure 9. Deflection of the top edge of the workpiece due to force and temperature 

2.5.2. Machining based on flexible force model 

Figure 10 is the results based on the flexible force model. The maximal deflection is 
0.278mm. Comparing with Figure 7, one can observe that the max stress and the max 
deflection in Figure 10 are all smaller. The simulation shows the deflection of workpiece 
affect the cutting force, and the cutting force also affect the deflection in return. We can get 
the following conclusion: (1) if the workpiece is machined based on CAM, there exists large 
errors, and (2) the prediction from the flexible force model is smaller than that from the rigid 
force model. Obviously, the flexible force model is closer to the real machining that the rigid 
force model. The temperature is not considered in both models. 
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Figure 10. Stress and deflection results of the flexible force model 

2.5.3. Machining based on thermo-mechanical analysis 

The results plotted in Figure 11 and Figure 12 are based on the thermo-mechanical analysis. 
The maximal deflection in Figure 11 is 0.527mm. It is larger than the deflection in the rigid 
force model and the flexible force model, but smaller than the sum of 0.278mm of the 
flexible force model and 0.384mm of the temperature-induced deflection. So the thermo-
mechanical model is not a simple combination of the flexible force model and the thermal 
deflection. The temperature has heavy effect on the deflection that the curve in Figure 12 is 
very similar with the curve in Figure 9. In practical error compensation, there will overcut or 
undercut if the force and the temperature studied separately. In order to reduce the 
machining error, it is important to reduce the cutting temperature during machining.  

 
Figure 11. Deflection results of the thermo-mechanical analysis 



 
Finite Element Analysis of Machining Thin-Wall Parts: Error Prediction and Stability Analysis 341 

 
Figure 12. Deflection of the top edge of the workpiece due to thermo-mechanical action 

3. Stability analysis of machining of thin-wall parts [49] 

3.1. Milling dynamics 

The standard two degree of freedom milling process is shown in Fig.1. The tool is assumed 
to be compliant relative to the rigid workpiece. The vibration is excited by the summation of 
cutting force. The governing equation of motion has the following form 

 0( ) ( ) ( ) ( ) ( ( ) ( )) ( )ct t t t b t t t b     Mx Cx Kx K x x f   (15) 

where, 
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M C K  and F  are the modal mass, damping, 

stiffness, and cutting force matrices, respectively. The terms ,x ym , ,x yc , ,x yk and ,x yF  are the 

corresponding components in the flexible directions of the system. b  is the axial depth of 
cut. 60 N    is the tooth passing period in seconds, in which N  is the number of teeth 

on the cutting tool and   the spindle speed in rpm. ( ) ( ) ( ) Tt x t y t   x  is the dynamic 

response vector and ( ) ( )t t  x x  the dynamic chip thickness, as shown in Figure 13. 
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Figure 13. Dynamic chip thickness 
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cK  is a matrix given as follows, which represents the component of cutting forces that 
depend on the position vector 

 
2 2

2 2
1

( ) [ ( )]
N

t n t n
c j

j t n t n

K sc K s K c K sc
t g t

K s K sc K sc K c




    
  

   
K  (16) 

where tK  and nK  are the tangential and normal cutting force coefficients components, 
respectively. sin ( )js t , cos ( )jc t  and the function [ ( )]jg t  acts as a switching function, 
which is equal to 1 if the thj  tooth is active and 0 if it is not cutting. 

 
 1     ( )

[ ( )]
 0     otherwise

e j a
j

t
g t

  


   


 (17) 

where e  and a  are the angles where the thj  tooth enters and exits the cut, respectively. 
For down-milling operation, a  , for up-milling, 0e  . Note that the entry and exit 
angles may vary due to heavy vibrations of the tool. This effect is neglected here, and the 
angles e  and a  are approximated by constant values as it is usually done in the literature. 

( )o tf  is the stationary cutting force vector ( zf  is the feed per tooth): 

 
2

2
( ) t n

o z
t n

K sc K s
t f

K s K sc
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  

   
f  (18) 

3.2. Deterministic model for predicting milling stability and calculating SLE 

Here the TFEA is introduced for brevity as a basis for the further uncertain analysis. The 
initial work of applying TFEA to the delay equations can be found in Ref. [5]. The main idea 
of TFEA is that the dynamic behavior of the milling process is governed by TFEA as a 
discrete linear map which relates the vibration response while the tool tooth is engaged in 
the cut, which depends on previous tooth passages and therefore includes the time delay  , 
to free vibration while the tooth is not engaged in the cut. The dynamic map is expressed as 

 
1n nq q

q q


          
      

A B
 

 (19) 

where A is the state transition matrix, the size of which depends on the number of time 
finite elements and polynomial order representing one time period. B  is a vector that 
depends on the process parameters. q  and q  are the sets of x  and y positions and 
velocities for all nodal times in one tooth passage, respectively. Stability of the milling 
process is determined from the eigenvalues of A , i.e. ( ) A . The maximum magnitude of 
the map eigenvalues is described by 

 max( ) max kk
 A  (20) 
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where k  denotes the thk  eigenvalue of the dynamic map matrix A , which is a function of 
the cutting conditions. Unstable conditions exist if  

 max( ) 1 A  (21) 

The stability boundary is defined by the boundary curve of axial depth b  and spindle speed 
 . A combination of b and   values below the stability boundary, limb , gives stable 
cutting conditions, whereas a combination above the stability boundary leads to an unstable 
cut. The stability boundary corresponds to the cutting conditions at which  

 max lim( ( , )) 1b  A  (22) 

When the milling process is stable, SLE can be obtained from fixed points of the dynamic 
map as given in Eqs. (21): 

 
1 *n nq q q

q q q


                
            

 (23) 

Substituting Eqs.(23) into Eqs.(19) gives the solution of fixed point map: 

 
*

1( )
q
q

     
  

I A B


 (24) 

The solution of fixed point displacement can be obtained and used to specify SLE as a 
function of cutting parameters. 

 
Figure 14. Nyquist plot of FRF of spindle-tool system with uncertainty regions[51] 
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3.3. Upper and lower bounds of Lobe diagram and SLE 

Since the uncertainties occur in the experimental modal analysis, the measured values for 
the structural parameters given in Eq.(15) are different from the actual ones. Much 
experiments had been done so that the errors can be observed, see Ref.[50, 51]. A detailed 
study was carried out in the work[51] to discuss the modal test. As shown in Figure 14, 
Nyquist plot of FRF of the spindle-tool system with uncertainty regions was given. 

In this section, we address the uncertainty problems in model parameters, which are 
modeled as the interval parameters as follows: 

 ( ) ( ) ( ) ( ) ( ( ) ( )) ( )I I I
c ot t t t b t t t b     M x C x K x K x x f   (25) 

where parameters M , C  and K are assumed to be bounded in the intervals and can be 
stated as: 

       I I I  M M C C K K  (26) 

The problem can be formulated as given the uncertainties as shown in Eqs.(26) how to 
estimate the stability of the milling system and SLE (Eqs.(25)). Noted the linear transform 
matrix A  given in Eq.(19), the right eigenvalue problem can be stated as 

 Au u  (27) 

where   is the eigenvalue and u  the corresponding eigenvector. The accompanying left 
eignenvalue problem is 

 T A v v  (28) 

Combined Eqs.(27) and (28), we can obtain 

 T Tv Qu v u  (29) 

For a parameter z , i.e., a spindle-tool modal parameter or a part geometrical one, the 
sensitivity of system eigenvalue with respect to z , z   can be expressed as follows 

 
T

Tz z
 


 
v A u

v u
 (30) 

where z A , the derivative of the matrix A  is obtained by the central difference method. 
So the sensitivity expression in Eq.(30) can be treated as a semi-analytical one[52]. It should 
be noted that 

 
2 '

max max max    (31) 

where '
max is the complex conjugate of max , then 



 
Finite Element Analysis of Machining Thin-Wall Parts: Error Prediction and Stability Analysis 345 

 

'
'max max

max maxmax

max2
z z

z

 
 



 
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
 (32) 

Substituting Eq.(30) into Eq.(32), we can get the explicit expression for max z  . More 
details of sensitivity of stability boundary, especially the error analysis can be referred with 
the reference[52]. When there is a perturbation for the milling system parameter z , i.e., 
z z z , the increment of max  is 

 max z
z


 





 (33) 

Denote max
U  and max

L  the upper and lower bounds of the eigenvalues of milling systems, 
respectively. They read 

 max max max

min max max

max{ ,   }

min{ ,   }

U

L

    

    

  

  
 (34) 

Then the upper and lower bounds of the milling stability Lobes, Uc  and Lc  can be obtained 
as follows 

 max lim

max lim

 when  ( , ) 1

  when  ( , ) 1

U L

L U

c b

c b





  


 
 (35) 

The central difference method used for the sensitivity analysis of system eigenvalues can be 
also applied to the sensitivity analysis of SLE. Thus we get the upper and lower bound of 
SLE, i.e. U

SLEf  and L
SLEf . The detailed discussions are omitted here. 

3.4. Robust machining parameters optimization 

In general, a deterministic cutting parameters optimization problem can be stated as 
follows: 

 
 

max

0

min  ( , ),  

( ( , )) 1
s.t.  

SLEf b

b

 

  
  

A  (36) 

where the optimization objects are to minimize SLE and maximize the spindle speed, and 
constraint conditions are to keep the milling process stable and the spindle speed is less than 
the predefined one, which is set by the spindle system and tool suppliers. Since there are 
uncertainties between the real structure and the model, the predicted performance including 
the milling stability and SLE will not be guaranteed. When the uncertainties exist, as given 
in Section 5, the optimized machining parameters, i.e. axis depth b and spindle speed   
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obtained from the deterministic optimization formulation (36) cannot guarantee the stability 
of the milling process, and minimization of SLE and maximization of spindle speed cannot 
be achieved. As a comparison, we give a formulation of robust machining parameters 
optimization as follows: 

 
 

max

0

min  max ( , ),

( ( , )) 1s.t.  

SLE
U

f b

b

 

  

  

A   (37) 

where the optimization object is to minimize the maximal SLE and maximize the spindle 
speed, and constraint conditions are to keep the machining parameters b and   below the 
lower bound of Lobe diagram given by max( ( , )) 1U b  A  and the spindle speed is less than 
the predefined one. The formulation of robust machining parameters optimization ensures 
the machining process stable and can lead to minimization of SLE under uncertainties. 

3.5. Implementation of robust optimization formulation 

The robust optimization formulation presented in Eqs.(37) can be transformed into the 
sequential optimization ones, that is: 

 max

0

min  max ( , )

( ( , )) 1s.t.  
  1,2,

for series of 

SLE
U

i

i

f b

b
i k





  

   

  

A


 (38) 

The optimization problem given in Eq.(38) is solved by the augmented Lagrangian function 
method. The basic idea of this method is that it transforms the nonlinear optimization 
problem into an unconstrained optimization one by introducing a penalty function, named 
augmented Lagrangian function[53]. The augmented Lagrangian function ( , ; )AL x    
achieves these goals by including an explicit estimate of the Lagrange multipliers   in the 
objective. The augmented Lagrangian function can be defined as 

 2 2
1 1 2 2 1 2

1( , ; ) ( ) [ ] ( )
2A SLEL f c c c c   


    x x  (39) 

where 1 2, , ( ),T
ib c l c       x x , ( )l x  is a cubic polynomial curve to interpolate the 

obtained Lobe diagram. It can be easily to obtain the differentiation of the augmented 
Lagrangian function with respect to the machining parameters, ( , ; )AL  x x . Then we can 
obtain the following algorithmic framework. 

Algorithm: the augmented Lagrangian function method. 
Step 0: Given initial points 0x and 0 , 0 0  , tolerance 0  ; 
Step 1: Find an approximate minimizer kx  of ( , ; )A k kL  x , i.e. arg  min ( , ; )k A k kL  x x ; 
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Step 2: If ( , ; )A k kL    x x , set 1k k  and update Lagrange multipliers 

1 ( )k k i k kc x      1,2i   to obtain 1k   and go to Step 1; else exit and report the 

minimizer *x . 

3.6. Experimental verification 

In this section, experiments of cutting parameters optimization are carried out to verify the 
numerical optimization modeling results. First the modal shape parameters of the spindle-
tool system are identified, with up and lower bounds, and then the optimization modeling 
results are presented by using the system parameters as input parameters. As a 
comparison, the deterministic optimization results are also presented. With the optimized 
machining parameters obtained from the robust optimization formulation and 
deterministic one, cutting experiments are implemented to check if the optimized cutting 
parameters are really “optimized”, which means there is no chatter arising with the 
optimized spindle speed. 

3.6.1. System parameters identification 

The system parameters as input variables to the optimization formulations are the 
structural dynamics parameters, i.e. modal shape parameters of the spindle-tool system. 
An impact hammer test is implemented to obtain the structural dynamics parameters of 
spindle-tool system. To obtain a reasonable interval, normally the repeated modal hamper 
impact experiments (see Fig.3) are necessary. Based on these experimental results, the 
modal parameters are identified by a Rational Fraction Polynomial (RFP) method[54], as 
given in Figure 16 and Figure 17. The mean values with upper and lower bounds for the 
modal parameters are given as follows (Table 1), which are derived from the repeated 
modal hamper impact experiments. xM and yM (kg) are the modal mass in x and y 
directions, respectively. x and y (kg/s) are the modal damping coefficients in x and y 
directions, respectively. xK and yK (MN/m) are the modal stiffness, in x and y directions, 
respectively.  

 
Figure 15. Experiment setup for modal shapes of spindle-tool system 
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Figure 16. Fitting of mode parameters of tool system in X-axis 

 
Figure 17. Fitting of mode parameters of tool system in Y-axis 

xM  yM  x y  xK yK  

0.7769E-2 
0.7473E-2 

0.7709E-2 
0.6499E-2 

4.0385% 
4.1938% 

6.0179% 
5.3940% 

0.6723E6 
0.6437E6 

0.6868E6 
0.5664E6 

Table 1. Modal parameters of spindle-tool system 

The tool for the simulation and experiments is a 10mm cylindrical cutter with 4-tooth and 
the cutter parameters are shown in Table 2. 

 
Radius 
(mm) 

Number of tooth Helix angle 
(degree) 

Edge length 
(mm) 

Total length 
(mm) 

Material 

10 4 30 8.5 33 Hard alloy 

Table 2. Cutter parameters 
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3.6.2. Modeling results 

In the experiment of machining of an impeller blade(single blade), the upper limit of the 
spindle speed is 20000rpm. The cutting depth is 0.560mm, which is derived from the 
geometry of the semi-finished and finished workpieces and the given tool path[55]. 

In table 1, we have presented the upper and lower bounds of the modal shapes parameters 
of spindle-tool system with mean values. The deterministic Lobe diagram is calculated by 
the TFEA[24]. Using the proposed method given in Section 4, we can obtain the upper and 
lower bounds of the boundary curve of Lobe diagram and SLE, as given in the upper part of 
fig.8. After the lower bound of the Lobe diagram and upper bound of SLE have been 
obtained, they are selected as the constraint conditions in the robust optimization 
formulations given as: 

 max

min  max ( , )

( ( , )) 1s.t.  for series of 20000
  1,2,

SLE
U

i
i

f b

b
i k





    
   

A


 (40) 

As a comparison, the mean values of the modal shapes parameters and SLE are adopted in 
the deterministic ones, stated as: 

 max

min  ( , )
( ( , )) 1

s.t.  for series of 20000
  1,2,

SLE

i
i

f b
b
i k





       

A


 (41) 

We solve the sequential optimization formulations as shown in Eqs. (40)-(41) by setting the 
spindle speed 20000 100 * ( 1),   1,2, 51i i i      . That means we are interested in the 
spindle speed interval from 15000rpm to 20000rpm, and in this interval the optimization 
formulations are solved for 51 times. Augmented Lagrangian function method is adopted to 
solve the above two constrained optimization problems and the detailed procedures are 
given in Section 6. The modeling results are shown in Table 3. 

 SLE Spindle speed 
Deterministic optimization [1.88E-5m, 2.08E-5m] 17900 rpm 
Robust optimization 1.99E-5 m 19100 rpm 

Table 3. Comparison of the optimization results 

3.6.3. Experiment of machining stability 

The cutting experiments of impeller blade milling are implemented in Mikron HSM 600U, a 
five-axis NC machining center. Experiment setup including the machining setup and 
Labview signal acquisition interface are shown in Figure 18. First, we prepare two semi-
finished blades, using the same workpiece geometry, tool path as well as machining 
parameters to ensure that the two blades are almost the same. Then the two semi-finished 
blades are used for the following finish milling with different spindle speeds. 
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The optimized spindle speeds derived from the robust and deterministic optimization 
formulations are used respectively to check the chatter occurrence. When the first blade is 
machined with spindle speed 19100 rpm, we observe that the milling process is stable and 
the quality of resulted workpiece is quite good, as shown in Figure 19(R). Then the second 
blade is machined and the spindle speed is set at 17900rpm, and the noise level dramatically 
becomes very high, which indicates the energy of the vibration at the frequencies related to 
chatter increases, see lower part of Figure 20. And we can see that chatter deteriorates the 
quality of the workpiece, as shown in Figure 19(L). 

Spindle speed (rpm) Resonance (Hz) Resonance source 
17900 1480 natural frequency of structures 
19100 1271 spindle revolution frequency 

Table 4. Resonances of sound pressure signal from different spindle speeds 

Further frequency response function (FRF) analysis of sound pressure signal indicates that 
when the spindle speed is at 17900 rpm, the resonance is about 1480Hz, which is 
approaching the first modal shape frequency of the spindle-tool system given by 

2
0 1 2   . This indicates the occurrence of chatter. And when the speed is 19100rpm, 

the resonance is about 1271Hz, which is the spindle revolution frequency and its higher 
harmonics 60k n , with k   and n  is the number of the tooth. We list the results in 
Table 4. From Table 4, we can see that the FRF analyses also suggest the chatter occurrence 
when the spindle speed is at 17900rpm and no chatter at 19100rpm. 

 
Figure 18. Experiment setup, (L)Machining setup (R)Labview signal acquisition interface 

 
Figure 19. Comparison of finished blades using different spindle speeds, (L) from deterministic 
optimization (R) from robust optimization 
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Figure 20. Signal of sound pressure with different spindle speeds. (U) Upper and lower bounds of Lobe 
diagram (L) Signal of sound pressure 

4. Conclusions 
In machining thin-wall workpieces, the temperature and force-induced deflection contribute 
significantly to the surface error. The proposed methodology is based on coupling effects 
between cutting forces and temperature and their induced deflection during machining. 
There is still a knowledge gap in identifying the impact of deflection on the process of metal 
removal, and hence there are not systematic approaches to modeling, prediction of the 
component errors due to thermo-mechanical deflection in thin-wall structures. And we 
develop a robust spindle speed optimization formulation. The quantitative analysis on how 
the uncertainties in milling process affect the milling stability and SLE are presented. 
Comparing with the traditional deterministic spindle speed optimization formulation, our 
model can take into account the uncertainties, i.e. modal shape parameters of spindle-tool 
system and the resulted optimized spindle speed ensures the milling stability. 
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1. Introduction 

Finite-element (FE) simulations are often used to predict the response characteristics of a 
structural component under different boundary conditions and to help explore the design 
space for the optimum design while minimizing the need for physical testing. It has also 
been used to model various manufacturing processes, especially those involving the 
forming process (Cheng and Kikuchi 1985; Chung et al. 1998; Li et al., 2002; van den 
Boogaard et al., 2003). 

Since such FE simulations and the accompanying structural design optimization studies rely 
on computer-based geometric model of the structural component and the tabulated material 
properties, the initial state (e.g., internal stresses and strains) of the component/material is 
most often ignored, which results in exclusion of the manufacturing process effects on the 
product (e.g., plastic strain, residual stress, thinning, springback, etc.). The selected 
manufacturing process and the choice of process parameters can also change the material 
microstructure (e.g., dislocation density, texture), thereby affecting the macroscale (e.g., 
stress-strain) behavior of the material and the structural component (Najafi et al., 2012; 
Oliveira et al., 2006).  

A practical way to alleviate this shortcoming is to perform coupled process-performance 
simulations in a sequential manner whereby both changes in the material and component 
can be properly modeled and tracked from one stage to the next for a more accurate 
prediction of the structural performance measures (Noels et al., 2004). Consequently, 
process parameters can be evaluated based on both the process objectives and performance 
criteria. Coupling of the material, process, and performance models is an important step in 
modeling the actual physical behavior of the material and structure while facilitating the 
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integrated material-process-product design (Olson, 1997; McDowell et al., 2007; Acar et al., 
2009).  

Coupled quasi-static analyses can be performed in some implicit finite element analysis 
(FEA) codes such as Abaqus/Standard where the boundary conditions can be changed and 
the material state can be tracked and passed from one solution step to the next by using the 
restart option, for example. The same capability also exists in some explicit FEA codes such 
as LS-DYNA and Abaqus/Explicit for coupled transient dynamic simulations. The 
increasing demand for coupled simulations has resulted in many commercial software 
codes to have an option to map some solutions as the initial state. However, when some 
combinations of dynamic and quasi-static analyses (i.e., explicit and implicit solvers) are 
required, a separate data flow management (DFM) program and strategy are required. The 
DFM procedure becomes more complex in the context of design optimization when the 
coupled analyses need to be performed numerous times for design space exploration in 
search of the optimum design. A particular case being considered in this chapter is the 
concurrent design of a coupled process-product system where both manufacturing process 
and product performance attributes are to be optimized by finding the optimum values of 
the manufacturing process on product design variables. 

Coupled process-product (performance) simulation studies include those that have considered 
the manufacturing effects associated with forming and springback on crush/crash performance 
of tubular components (Oliveira et al., 2006; Kellicut et al., 1999; Kaufman et al., 1998; Grantab, 
2006; Krusper, 2003). For example, Kellicut et al. (1999) considered springback, thinning, and 
other parameters such as plastic strain and residual stresses in bending-crush simulations of 
hydroformed tubes and showed that the plastic strain has the greatest effect on the crush 
behavior. Mayer (2004) and Williams et al. (2005) also performed integrated hydroforming-
crush simulations, whereas Ryou et al. (2005) used ideal forming solution to extract the stress 
and strain responses from forming process and a hybrid membrane/shell method to pass the 
information to impact simulation. They improved the computation time while preserving the 
accuracy of the FE simulations. Simunovic and Aramayo (2002) studied the crash response of 
energy absorbing components of the ultra light steel auto body vehicle models and showed 
that by including the history effects the energy absorption properties can change even though 
the difference in the overall response was relatively modest.  

Oliveira et al. (2006) and Williams et al. (2005) performed experimental and computational 
study of s-rail tubes and discovered that both the maximum and mean crush force values 
will change as a result of the manufacturing process effects. Bottcher and Frik (2003) did a 
similar study and showed that metal forming data is required in crash simulation of front 
rail panel of a vehicle model, especially in high strength dual phase steel due to its rapidly 
hardening characteristic. Krusper (2003) and Dagson (2001) performed analysis on a simple 
bar while considering the springback response of the material. Most of the studies cited only 
considered a material model with isotropic hardening while a few included the effect of 
kinematic hardening on the crush response. Recently, Williams et al. (2010) studied the 
effect of combined isotropic/kinematic hardening and strain rate sensitivity along with an 
anisotropic yield surface to study the crush behavior of hydroformed tubes. They showed 
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that the combination of these parameters increases the capability of models to correctly 
predict the energy absorption performance of the crush tube. However, they did not 
investigate the capabilities of the model in coupled process-performance simulations. 

This chapter presents the different steps in performing sequential coupled nonlinear FE 
simulations and their application in multi-objective process-product design optimization of 
thin-walled structures. The sheet stamping simulation includes both the deep drawing and 
the springback stages of the manufacturing process. Performance simulation considers the 
energy absorption response characteristics of the component under an impact (crash) 
loading condition. The coupled simulations involve both nonlinear explicit and implicit 
FEA. The developed computational framework is used for the analysis and design of a 
double-hat tube. A design sensitivity analysis is performed to investigate the effect of 
manufacturing process parameters and geometric attributes on the process and performance 
responses that are affected by the manufacturing process and geometric design parameters. 
The ensuing nonlinear design optimization problem is cast in a multi-objective formulation 
and solved for Pareto optimum design points using a multi-objective genetic algorithm. 

2. Modeling of manufacturing effects  

Constitutive models describe the stress-strain relationship for a given material and the 
influence of various factors such as temperature and strain rate. Plastic deformation requires 
variables that define the history of stress and temperature in the material. The history can be 
defined through functional analysis and mathematical theories known as the theory of 
material with memory (Lubliner, 2006). Manufacturing effects in most continuum-level 
material models are considered implicitly through the state variables defined in the model. 
For example, in the classical plasticity model, the total strain is written as an additive 
decomposition of elastic strain and plastic strain. Considering a piecewise linear isotropic 
hardening law derived from the stress-strain data, the equivalent plastic strain would 
represent, in a limited sense, the history or the manufacturing effect. Inclusion of 
manufacturing effects in the continuum plasticity models emerges by specifying the initial 
state for the numerical integration of the evolution equation of the state variable.  

The constitutive relation of the rate dependent classical plasticity model with isotropic 
hardening can be represented through the following equations:  

 Elastic stress-strain relationships in three-dimensional space  

 �� = �� (�� � �� ��) (1) 

 Yield surface (closure of elastic domain in the stress space) 

 �(�� �) = |�| � ��� � ��� � � (2) 

 Flow rule and hardening law 

�� �� = �� ��(�� �)�� � �� = �� (3)
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 ��(�, �) = �
�
� ��

|�|
���

� �� − 1� 	��	�(�, �) ≥ 0
	0	��	�(�, �) < 0

	 (4) 

where the bold symbols � and � represent the second-rank stress and stain tensors, 
respectively, and ℂ is the forth-rank tensor of isotropic elasticity. The superscript vp 
designates the viscoplastic component. The ∎�  terms indicate time derivatives. The yield 
stress is denoted by �� with parameters H and ҝ representing isotropic hardening modulus 
and plastic multiplier, respectively. Moreover, � and � in the hardening law equation are 
known as material constants associated with rate sensitivity, which are found based on 
experimental data on a specific material. As mentioned previously, the manufacturing 
effects emerge as the consequence of numerical integration of the model described by Eqs. 
(1) through (4).  

The numerical integration scheme in the deviatoric space is defined based on updating the 
current state of stresses and state variables (with subscript n) by calculating their increment 
△ (∎). The deviatoric part of total strain tensor � is updated as 

���� = ���� −
1
3 ��������� (5)

where � is the identity tensor and ��(∎) is the trace of the second rank tensor. The trial stress 
tensor ����� 	is calculated from the Hook’s law given by 

  ����� = 2������ − ����  (6) 

where the ��� is the plastic strain at the nth increment and � is the shear modulus. Then, the 
calculated stress magnitude value at n+1 increment ‖����� ‖	is evaluated with the yield 

surface �����  at the same increment. If ����� = ‖����� ‖ − ��
� ��� + ��� � 0 is met, the material 

is in the elastic region and the trial values are the admissible stress values and, therefore, the 
plastic multiplier �� or Δ���� is zero with 

  (∎)��� = (∎)����   (7) 

And if ����� > 0,	the trial values should be corrected due to an additional plastic strain and 
the yield surface is approximated through the first-order Taylor series expansion as  

����� ≈ ��� +
∂�
∂∆λΔ���� (8)

where Δ���� is computed based on Newton-Raphson scheme (Wang and Budiansky, 1978; 
Simo and Hughes, 2000; Souza et al., 2008). Therefore, the next state of material (with 
subscript n+1) is derived by adding the increments Δ(∎) to the previous state of stress as 

κ��� = κ� + �23 Δ���� (9)
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  ������ � ���� � ����������  (10) 

  ����� � ������������ � ������ � �������������  (11) 

  ���� � �� � �����  (12) 

where ��(∎) represents the trace of the tensor, trial values are denoted with t superscript, 
and the normal to the yield surface is found as ���� � � ����� ‖����� ‖⁄ . By having κ� � ����, the 
manufacturing effect can be considered through a non-zero state of �� and ���� at the 
beginning of the analysis as �� and ����.  

Traditionally, the initial values for the first increment are considered to be zero assuming 
that the material deformation starts from a conceptual pristine state. However, 
incorporating proper initial values emanating from forming and springback simulations in 
the crush analysis couples the process and performance from the material standpoint. 

3. Manufacturing process and product performance simulations 

Coupled process and performance simulations are conducted sequentially by using 
Abaqus/Explicit for the deep drawing (loading) simulation, Abaqus/Standard for the 
springback (unloading) simulation under isothermal condition, followed by 
Abaqus/Explicit for the crush simulation. The illustrative example considered in this 
chapter is a double-hat, thin-walled tube that is modeled by joining two identical single hat 
sections.  

3.1. Deep-drawing simulation 

For forming or deep-drawing simulation, two sets of blank/holder/die/punch geometries are 
defined in the FE model with the model for one set shown in Fig. 1. A single die set is 
mirrored with respect to blank plane to simulate the forming of both pieces simultaneously. 
There are two basic steps in using the explicit FEA for the forming simulation of each single 
hat section depending on the specified boundary conditions. 

The first step defines the gripping of the blank between the die set and the holders. While 
keeping the punch and dies fixed in their respective positions, the holding forces are 
increased linearly from zero to the specified value matching the corresponding 
manufacturing process control parameter. In this stage, the kinematic contact formulation is 
used because of the computational  efficiency of the formulation (Rebel et al., 2002; Oden 
and Kikuchi, 1982; Oden and Pires, 1983; Bayram and Nied, 2000; Wriggers, 2006). Due to 
the simplicity of the geometry, die and holder surfaces are defined through standard 
analytical rigid surfaces. Contact surfaces are defined on both surfaces of the blank by 
considering the surface offset due to the blank thickness. Penalty formulation is used in 
tangential contact and a friction coefficient is defined as a manufacturing process parameter 
for an equivalent representation of both surface roughness and draw beads. 
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Figure 1. Sheet-forming FE model of a single hat section 

 
Figure 2. Formed hat section with the boundary conditions used for the subsequent springback 
simulation 

The second step performs the deep drawing simulation by applying a constant velocity to 
the punch that is configured in the model to match the final geometry of the product 
(excluding the springback effect). Hence, the results of the previous step are directly 
transferred to this step where the boundary conditions on the fixed punch in the direction 
normal to the blank surface are removed and a constant velocity is applied to the punch to 
form the single hat section as shown in Fig. 2. The punch velocity is assumed to be constant 
for a linear displacement. This setup does not impose a uniform strain rate in all the 
elements. Thus, rate sensitivity of the material will not have a uniform effect on the 
structure. Dies remain clamped and the holders are fixed in all degrees of freedom except 
the direction parallel to the punch movement. In this direction, the constant holding force is 
applied to preserve the constant gripping force throughout the drawing process.  
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Rupture and thinning are two responses that can be calculated from the results of the deep-
drawing simulation. Rupture is calculated by extracting the principal major and minor 
plastic strains in each element and taking the difference between the major strain and that 
extracted from the forming limit diagram (FLD) using the following equation 

� � �����
�

���
��(��� � �(��� ))�

�

���
��� � �(��� )

� � ��� � �(��� )
 (13)

where �(��) is the equation representing FLD curve and ���  and ���  are the principal major 
and minor strains at each integration point through the thickness, respectively, which are 
calculated in the deep-drawing simulation when the termination time reaches the limit. The 
parameter I represents the total number of integration points in the mesh. The FLD (Lee et 
al., 2008) that is used in this study is that for AZ31 magnesium alloy sheet and it is assumed 
to behave linearly in both compressive and tensile plastic strains as shown in Fig. 3. 

 
Figure 3. FLD for AZ31 at two different strain rates (Lee et al., 2008) 

Thinning is measured by taking the difference between the final thickness of each element 
and its corresponding initial value and is calculated using a single metric, T defined as 

� �����
�

���
��(�� � ��

�� )�
�

���
 (14)

where �� and �� are the initial and final shell thicknesses, respectively, and N is the total 
number of elements in the mesh. Since the shell thickness in the blank is assumed to be 
constant for all the elements, �� is the shell thickness assigned to the elements.  

3.2. Springback simulation 

The state variables and geometric information from the deep drawing simulation are 
transferred and treated as the initial state in the unloading stage (i.e., removal of all the 
tooling parts from the workpiece) for the springback analysis. Springback process is modeled 
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as a quasi-static problem considering the stress distribution captured from deep drawing, 
dynamic effects, and the contact conditions. Additionally, all the rigid surfaces including 
punch, dies, and holders are removed from the FE model, which makes the model more 
suitable for implicit FEA considering the quasi-static nature of the springback phenomenon 
and the absence of highly nonlinear factors in the model. Convergence of the nonlinear 
implicit FEA are guaranteed by defining the boundary conditions in such a way that the two 
edges of the hat section are held fixed perpendicular to the actual normal surface. As shown 
in Fig. 2, the equilibrium condition is achieved by constraining the model in all the transverse 
directions. The boundary conditions defined in this stage are designed such that the effect of 
the force required to assemble a non-fitted double-hat section is already considered. The 
residual stresses and geometric attributes are updated during quasi-static analysis while the 
other computational state variables such as plastic strain remain unchanged. Similar to the 
deep-drawing simulation, the springback analysis is performed separately and 
simultaneously on the two identical single hat sections. There is no interaction between the 
two hat sections, however, in both the deep drawing and springback simulations. The two 
hat sections are then assembled in the next stage to produce a double-hat crush tube. 

Springback is calculated by comparing the nodal coordinates obtained in the last step of the 
deep-drawing simulation with those in the last step of the springback simulation. A single 
springback metric, S representing the deviation of the nodal coordinates is calculated as 

 � � �����(�����)� + (�����)� + (�����)��������� � �� ��  (15) 

where �� �� � are the Cartesian coordinates with subscripts i and o representing the end of 
springback and deep-drawing stages, respectively with NN as the total number of nodes in 
the mesh. 

An in-house FORTRAN code is used to automate the procedure to extract the rupture and 
thinning results from the Abaqus binary file, calculate the principal strains, and incorporate 
the equations mentioned above (without using Abaqus CAE) in the deep-drawing and 
springback simulations.  

3.3. Joining and trimming 

The two hat sections are joined longitudinally using tie contact formulation and trimmed by 
removing the outer flange elements as shown in Fig. 4. The tie contact constrains the master 
and slave surfaces similar to the multiple constraint points when the clearance between two 
surfaces is below the tolerance specified as input. If the surfaces are out of the prescribed 
tolerance, the interaction becomes a contact formulation. A preliminary study showed that 
switching the master and slave surfaces would not affect the crushing behavior of the tube. 
Once the distance between the two surfaces becomes more than the clearance tolerance, 
constraints are removed and contact formulation is activated similar to the conventional 
contact definition. It is worth noting that this kind of joining represents a fictitious weld 
seam along each joint line since the thermo-mechanical process involved in an actual 
welding process is not modeled here.  
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Figure 4. Joining and trimming of the two formed sections to generate the final double-hat tube geometry 

3.4. Crush simulation 

The explicit FEA for crush simulation is performed by holding one end of the tube fixed 
while applying an axial load through a moving rigid wall at the other end. The rigid wall 
moves with a constant speed to simulate constant loading rate defined with a prescribed 
displacement as shown in Fig. 5. The component geometry, residual stresses, and state 
variables at the start of crush stage are those accumulated through all the manufacturing 
stages discussed previously.  

 

 
Figure 5. General setup for crush simulation 

Six contact interaction sets among the elements are defined in the crush simulation, 
including interactions between the lower hat section and the rigid wall, the upper hat 
section and the rigid wall, interaction between the upper and lower hat sections, tie contact 
between the assembly edge of the upper and lower surfaces, and separate self contact 
interaction for the upper and lower hat sections. For all of the aforementioned contact 
interaction sets, penalty function formulation in both normal and tangential directions is 
used. Despite the computational cost, penalty function provides a proper flexibility for the 
explicit FEA to find a stable time step that is affected by severity of the contacts. Moreover, 
the maximum ratio of thickness-to-element length is used to overcome the difficulty of the 
fine mesh density that results in relatively thick shell elements.  

The contact force history of the rigid wall during the crush simulation is used to calculate 
the maximum crush force, Pmax while the mean crush force, Pm is found by dividing the area 
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under the crush force-displacement curve by the effective crush distance. The mathematical 
equation for finding the mean crush force is expressed as 

�� = 1
���� � �(�)�(�)��

�

�
 (16)

where �(�) is the instantaneous contact force normal to the rigid wall surface and �(�) is the 
instantaneous cross-head axial displacement of the rigid wall. The final cross-head 
displacement of the rigid wall represents ���� and it is assumed to be 125 mm, or 50% of the 
tube length. The maximum crush force is the largest value of �(�) found after applying the 
SAE filtering of 60 Hz to filter the noise in the force data. These results are extracted and 
filtered using a Python scripting application available in Abaqus and used as input to an in-
house FORTRAN code to calculate the mean crush force values.  

 
Figure 6. Sequence of coupled nonlinear FE simulations 

Figure 6 shows the general four-step sequence of coupled simulations from the initial sheet 
forming to crush. The rupture and thinning responses are the outputs of step 1, springback 
is the result of step 2 while the mean and max crush force values are the outputs of step 4.  
Other than the joining of the two hat sections and removal of the excess tabs, no changes are 
induced in the tube model in step 3.  

3.5. Material model 

The material model uses piecewise linear isotropic hardening. The constant for the linear 
kinematic hardening is calculated based on the slope of a line connecting two adjacent 
points on the stress-strain curve. The material model uses von Misses yield surface and a 
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one-dimensional stress-strain input is considered as equivalent von Misses stress versus 
effective plastic strain. Coupling scheme is utilized by transferring residual stresses and the 
equivalent plastic strains as the material state variables. The yield surface expands due to 
the isotropic hardening assumption in the model; therefore, the instantaneous yield point 
varies during the loading process. The yield point at the end of the forming simulation is 
captured by finding the plastic strain.  

The AZ31 magnesium alloy sheet data is used for all the simulations. For modeling the 
stress-strain response at various strain rates, the stress-strain curves for two extreme rates 
(i.e., 1 s-1 and 4300 s-1) are considered with those for the other rates found through 
interpolation. The elastic modulus, Poisson’s ratio, and density are 45 GPa, 0.33, and 1.738 
kg/m3, respectively. The true stress-true strain curves for the two extreme strain rates are 
shown in Fig. 7. Adiabatic heating is not considered in any of the simulations. 

 
Figure 7. AZ31 magnesium alloy sheet stress-strain curves for two different strain rates 

3.6. Effect of manufacturing process on product performance 

To examine the role of the history effects on the axial crush response, two simulation cases 
are compared. In the first case, separate stand-alone performance simulation that does not 
include any history effects is performed, whereas in the second case, a sequential coupled 
process-performance simulation is performed that includes residual stresses, plastic strains, 
thinning, and springback information from process simulation (as manufacturing effects) 
together with a piecewise linear isotropic hardening material model in performance 
simulation. The 250-mm long tubes are modeled using the plane-stress shell element 
formulation. They are held fixed at one end and axially loaded with a flat rigid wall at the 
other end that is moving with a constant speed of 5 m/s. Both self-contact and surface-to-
surface contact between rigid wall and tube are specified. A classical multi-linear kinematic 
hardening material model is used for this comparison.  

�� = 4300 s�� 

�� = 1 s�� 
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Figure 8. Crush behavior with and without consideration of manufacturing process effects 

Figure 8 shows the two crush force-distance curves as well as the corresponding crush 
modes. The results clearly show that both the crush response and the collapse mode change 
due to the inclusion of the history effects. The maximum crush force increases by 
approximately 10% from 77 kN to 85 kN, whereas the mean crush force decreases from 20 
kN to 18 kN when the history effects are considered.  

4. Sensitivity analysis  

A design sensitivity analysis is helpful in capturing the main effects of the individual 
process and product design variables on both the manufacturing and performance attributes 
(Najafi 2011). The product design variables are the tube cross-sectional dimensions (i.e., 
width, height of a single hat section, corner radius, and initial blank thickness) shown in Fig. 
9, whereas the process design variables are the holding force, punch velocity and workpiece 
/ die set friction coefficients.  

 
Figure 9. Description of geometric design variables for a 250-mm long tube 

The friction coefficients for the holders, dies, and punch are assumed to be equal but can be 
treated as different design variables. The width design variable defines the punch width, the 
corner radius defines the die and holder corner radii, the thickness design variable is 
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assigned directly to the shell elements that define the blank and the height design variable is 
controlled by the punch travel distance in the direction normal to the blank surface (this 
parameter also determines the simulation termination time as well as the prescribed punch 
velocity). Holding force defined as a manufacturing process parameter is the amount of 
maximum incremental force in the first step of deep drawing. The rate of holding force 
application is kept constant in all the simulations. Punch velocity is assumed to be constant 
in the direction perpendicular to the sheet metal; this parameter along with the height 
determines the deep-drawing simulation termination time. Friction coefficients are assigned 
to the contact tangential definition. Both kinematic and penalty tangential contact 
formulations produced the same response in the deep drawing simulation.   
 

Design 
Variable 

Width 
(mm) 

Height 
(mm) 

Corner 
Radius 
(mm) 

Thicknes
s (mm) 

Holding 
Force (kN)

Punch 
Velocity 

(m/s) 

Friction 
Coefficien

t 
Width 41.25 27.5 5.0 1.75 30 6.0 0.225 
±15% 63.25 27.5 5.0 1.75 30 6.0 0.225 

Height 55 20.625 5.0 1.75 30 6.0 0.225 
±15% 55 31.625 5.0 1.75 30 6.0 0.225 

Corner 55 27.5 3.75 1.75 30 6.0 0.225 
Radius ±15% 55 27.5 5.75 1.75 30 6.0 0.225 

Thickness 55 27.5 5.0 1.3125 30 6.0 0.225 
±15% 55 27.5 5.0 2.0125 30 6.0 0.225 

Holding 55 27.5 5.0 1.75 22.5 6.0 0.225 
Force ±15% 55 27.5 5.0 1.75 34.5 6.0 0.225 

Punch 55 27.5 5.0 1.75 30 4.5 0.225 
Velocity ±15% 55 27.5 5.0 1.75 30 6.9 0.225 

Friction 55 27.5 5.0 1.75 30 6.0 0.16875 
Coefficient ±15% 55 27.5 5.0 1.75 30 6.0 0.25875 

Upper Bound 70 35 7.5 2.5 50 10.0 0.35 
Mean 55 27.5 5.0 1.75 30 6.0 0.225 

Lower Bound 40 20 2.5 1.0 100 2.0 0.1 

Table 1. The values assigned to design variables for sensitivity analysis 

The sensitivity results are shown in Fig. 10. In each case, the sensitivity values are found by 
perturbing one design variable by +/-15% from its corresponding average value while 
holding the remaining design variables fixed at their respective average values shown in bold 
numbers in Table 1. Rupture is found to be most sensitive to the sheet thickness followed by 
the corner radius. In contrast, the friction coefficient, punch velocity, and holding force 
appear to have minimal effect. The rupture response was found to have a direct relationship 
with some parameters such as thickness and punch velocity and inverse relationship with 
others, corner radius being the most notable. The global measure of thinning is affected the 
most by changes in the corner radius, followed by blank thickness and height. In comparison, 
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the manufacturing process parameters appeared to be less influential. Springback response is 
most sensitive to changes in blank thickness followed by the corner radius and friction 
coefficient. Both the maximum and mean values of the crush force increase as a result of 
increasing the blank or tube thickness. Generally, sensitivities to the geometric parameters 
seem to be greater than those of the manufacturing process parameters. 
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Figure 10. General sensitivity of rupture (a), thinning (b), springback (c), maximum crush force (d), and 
mean crush force (e) to the process and product design variables 

5. Multi-objective design optimization 

In a traditional process optimization problem, the manufacturing process objectives are 
optimized by varying the process control parameters (Sun et al., 2010; Wei and Yuying, 2008; 
Hu et al., 2008; Konak et al., 2006) whereas in product optimization, the geometry (e.g., shape, 
size) is altered to enhance the product performance. However, in a coupled process-
performance optimization problem as considered here, both manufacturing- and performance-
level attributes are optimized. When faced with competing objectives, the resulting multi-
objective optimization problem becomes one of finding not just one but a collection of non-
dominated design points that form the Pareto frontier. By specifying a particular target value 
for each objective, the multi-objective optimization problem is expressed as 

min								
� � ��,� , �� �

(�(�) � ��)�, (	�(�) � ��)�, (�(�) � ��)�,
	(��(�) � ���)�, (����(�) � ���)�, (�(��, � , ��) � ��)�� 
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 (17) 

where design variables x1 to x7 represent width, height, corner radius, thickness, holding 
force, punch velocity, and friction coefficient, respectively with each having both lower- 
and upper-bound side constraints. Also, R(x) is rupture, T(x) is thinning, S(x) is springback, 
Pm(x) is the mean crush force, Pmax(x) is the maximum crush force, and M(x) is mass with 
TR, TT, TS, TPM, TPX, and TM as the corresponding target values, defined later in this 
section. The blank length is always equal to the tube length of 250 mm, whereas the blank 
width is selected to be twice as long as a single hat section’s perimeter (developed width). 
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Considering the computational complexity and cost of coupled nonlinear FE simulations, 
reduced-order or surrogate models are used to approximate the responses defined in Eq. (17). 
Different metamodeling techniques have been developed and reported in the literature. 
Although they vary in terms of complexity and accuracy, they all rely on measured responses 
at the selected training points in the design space to find the unknown coefficients of a 
specific metamodel such that the approximation error is less than an acceptable threshold.  

Radial basis functions (RBF) have been shown (Fang et al., 2005; Wang and Shan, 2007; Acar 
and Rais-Rohani, 2008; Parrish et al., 2012) to be suitable for approximating highly nonlinear 
responses using relatively small number of training points. In RBF formulation (Fang and 
Horstemeyer, 2006), the approximate response ��(�) at a design point defined by the 
normalized design variable vector y is found as 

��(�) =����(‖� � ��‖
�

���
) (18)

where yi is the vector of normalized design variables at the ith training point, ����� ����� �= � �� 
is the Euclidian norm or distance from design point � to the ith training point, and M is the 
total number of functions included in the summation. The λi parameters are the unknown 
interpolation coefficients with φ representing the radially symmetric basis function that can 
take different forms. We considered both the multiquadric �(�) = √�� � �� and Gaussian 
�(�) = ���(����) basis functions, where c is a tuning parameter that can vary in the range 
of 0 < c ≤ 1 depending on the selected response.  

In the coupled process-performance FE simulations, it is necessary to perform the deep-
drawing, springback, and crush simulations in sequence. However, once a stand-alone 
surrogate model for each response is built, all the responses can be evaluated 
simultaneously, which provides considerable computational cost savings in the design 
optimization analysis. Using the Latin hypercube sampling (LHS) to produce a uniform 
distribution of design points, fifty training points were generated in the seven design-
variable (7-dimensional) design space. Table 2 lists the training points and the 
corresponding values of the selected design variables. The maximum and minimum values 
for each design variable are shown in bold. Ten additional random design points are also 
generated as test points to measure the accuracy of the surrogate models.  

Six responses are extracted for each set of simulations at each training point with the 
calculated response values listed in Table 3, where the value selected as the target for each 
response is shown in bold.   

Two error metrics are considered. For the cross-validation normalized root-mean-square 
error (NRMSE) estimation (Lin et al., 1999), a metamodel is created using all except one 
training point and then the predicted response at the omitted point is compared to the 
corresponding true response value to measure the approximation error. This process is 
repeated for all the training points and the average is used as the overall error of the 
metamodel. NRMSE is calculated using 
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Point 
x1 

(mm) 
x2 

(mm)
x3 

(mm)
x4 

(mm)
x5 

(kN)
x6 

(m/s)
x7 Point

x1 
(mm)

x2 
(mm)

x3 
(mm)

x4 
(mm)

x5 
(kN) 

x6 
(m/s) 

x7 

1 60.44 27.19 4.91 1.26 31.93 5.86 0.18 26 52.98 31.62 4.94 1.34 21.35 4.90 0.29 
2 40.00 35.14 4.58 1.60 36.68 7.76 0.23 27 70.88 21.22 5.42 2.19 23.66 6.47 0.27 
3 53.14 25.15 5.72 2.27 31.18 6.26 0.22 28 64.74 25.38 5.59 1.63 31.58 4.29 0.26 
4 56.48 27.61 4.86 1.58 29.09 7.02 0.25 29 61.85 34.06 5.98 1.29 22.27 6.81 0.16 
5 62.84 34.42 3.74 1.42 30.85 6.70 0.18 30 47.60 21.91 6.12 2.24 32.31 6.32 0.24 
6 44.85 24.15 6.41 1.84 38.00 4.69 0.25 31 39.66 32.03 3.91 1.93 30.46 7.09 0.21 
7 56.30 32.39 5.13 1.91 29.42 6.60 0.19 32 46.59 21.26 3.73 1.74 23.37 4.71 0.26 
8 42.46 23.00 5.10 2.14 26.58 5.77 0.17 33 57.54 30.83 4.58 1.82 25.82 6.76 0.24 
9 63.58 26.23 4.68 2.19 38.47 4.62 0.22 34 43.90 29.55 5.52 1.62 26.97 6.92 0.20 
10 54.23 33.49 3.99 1.28 38.96 6.56 0.20 35 65.50 31.16 4.81 1.55 24.56 7.45 0.24 
11 48.30 29.98 6.03 2.00 36.15 6.05 0.29 36 66.23 35.09 6.16 1.23 34.19 5.82 0.28 
12 43.44 26.91 4.38 2.11 34.52 4.42 0.24 37 50.61 23.55 3.68 1.51 28.36 4.79 0.16 
13 42.84 29.06 5.19 1.78 32.73 6.13 0.22 38 54.81 19.89 6.50 1.66 21.68 5.26 0.18 
14 67.81 20.25 5.27 1.33 33.95 5.38 0.21 39 38.59 32.69 5.76 2.15 33.21 5.56 0.27 
15 46.24 24.20 6.35 1.37 28.02 7.30 0.23 40 50.36 26.68 5.65 1.76 35.66 5.99 0.17 
16 69.79 20.21 4.43 1.53 27.13 4.25 0.27 41 55.16 21.57 3.82 1.88 24.72 5.67 0.19 
17 51.31 33.00 4.31 2.03 25.58 4.95 0.19 42 48.47 20.71 3.52 1.70 35.24 6.40 0.21 
18 70.76 19.49 4.48 1.71 35.85 7.37 0.17 43 61.19 22.46 5.43 2.08 26.22 7.70 0.28 
19 52.31 28.09 5.35 2.05 37.52 5.03 0.27 44 67.06 23.50 3.59 2.02 22.06 5.15 0.26 
20 41.12 22.63 4.72 1.46 37.64 5.47 0.25 45 58.65 35.70 5.87 1.44 30.33 5.10 0.16 
21 59.51 28.37 4.15 1.98 23.96 5.60 0.21 46 49.22 25.76 4.07 1.39 37.08 7.53 0.21 
22 57.95 29.43 5.81 1.49 22.61 7.18 0.28 47 68.86 28.68 4.17 1.95 34.92 7.59 0.19 
23 65.67 30.75 4.26 2.09 25.26 6.21 0.23 48 41.67 33.31 6.23 1.68 27.49 5.29 0.20 
24 45.56 25.88 6.28 1.80 29.67 7.26 0.28 49 60.22 24.72 3.96 1.41 33.33 4.49 0.17 
25 64.11 34.45 5.05 2.23 23.08 4.55 0.23 50 69.41 30.27 5.92 1.86 28.69 6.94 0.28 

Table 2. Selected training points and design variable values in the process-product design space 

����� � �1����� − �����
�

���
(���� − ����)�  (19)

where K is the number of training points, �� is the actual response obtained from the coupled 
FE simulations (expect for mass), and ��� is the response predicted by the model that excludes 
the contribution of the ith point with ���� and ���� as the maximum and minimum values of 
the response, respectively.  

The second error metric is obtained by fitting a metamodel based on all the training points 
and taking the absolute value of the difference between the approximate and the true 
response values at each of the selected test points with the average error of all the test points 
as the final indicator of metamodel accuracy. 

The metamodels were tuned by selecting the parameter c and the RBF formulation that 
produced the least error for each response. Table 4 shows the RBF tuning parameter and 
formulation used for each response and the corresponding NRMSE and average error  
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Point R T S 
Pmax 
(kN) 

Pm 
(kN) 

M 
(kg) 

Point R T S 
Pmax 
(kN) 

Pm 
(kN) 

M 
(kg) 

1 538.3 36.6 0.21 95.5 30.8 0.13 26 1003.5 88.4 1.83 101.0 34.7 0.14 
2 1911.8 173.2 0.29 116.3 43.3 0.16 27 1672.9 109.0 0.31 160.9 62.1 0.22 
3 1938.2 119.0 0.68 160.2 67.4 0.21 28 881.1 62.5 1.72 123.9 41.6 0.17 
4 1370.0 116.8 0.79 116.8 43.1 0.16 29 455.3 32.0 2.56 109.6 33.8 0.15 
5 1477.6 141.8 3.60 123.2 35.7 0.16 30 1521.7 81.5 1.16 144.6 63.7 0.18 
6 870.2 45.3 2.10 114.8 54.0 0.15 31 3328.9 298.8 1.18 136.8 57.0 0.18 
7 1697.4 139.7 0.34 154.0 60.0 0.20 32 2123.5 165.4 0.40 102.7 36.2 0.14 
8 1774.8 107.1 0.92 132.0 54.3 0.17 33 2073.2 184.0 0.44 142.8 51.7 0.19 
9 2098.0 161.2 0.50 167.0 66.3 0.22 34 1112.4 85.7 1.78 112.4 54.9 0.15 
10 1253.6 117.3 3.54 100.6 30.1 0.14 35 1282.8 111.4 1.48 132.0 42.5 0.17 
11 1663.9 123.8 1.36 145.5 54.7 0.19 36 633.2 59.6 1.63 108.4 33.9 0.15 
12 2470.5 186.3 0.50 140.6 53.6 0.18 37 1427.3 112.1 1.03 96.6 28.8 0.13 
13 1651.3 124.6 1.62 121.3 50.0 0.16 38 476.2 15.9 1.48 103.1 42.2 0.14 
14 538.4 32.1 0.62 92.3 30.0 0.13 39 2113.2 154.7 0.85 153.6 64.9 0.20 
15 573.7 34.9 1.16 86.4 31.6 0.12 40 1003.8 66.3 1.81 122.2 46.3 0.16 
16 1115.1 78.7 0.59 108.5 37.0 0.15 41 2158.6 168.0 0.83 121.7 45.1 0.16 
17 2118.4 184.5 1.77 158.6 50.3 0.21 42 2313.8 180.7 0.50 100.3 34.9 0.13 
18 1288.4 92.9 0.32 120.6 39.6 0.17 43 1779.5 122.4 0.42 145.2 60.6 0.20 
19 1971.0 141.4 0.77 148.5 57.9 0.20 44 3037.0 251.1 0.70 149.3 49.0 0.20 
20 1148.4 81.1 1.34 84.0 29.9 0.11 45 528.6 36.1 1.04 123.7 45.6 0.17 
21 2188.3 184.8 0.94 151.8 51.8 0.20 46 1497.3 133.9 1.21 93.0 30.5 0.12 
22 938.5 76.0 1.68 115.4 43.1 0.15 47 2242.6 195.4 0.61 162.3 59.7 0.22 
23 2675.3 228.7 1.16 175.1 54.0 0.23 48 818.8 57.2 2.95 124.5 47.1 0.16 
24 1213.2 82.4 1.66 119.2 45.0 0.16 49 1017.6 78.1 0.66 100.6 30.9 0.14 
25 1940.7 171.3 1.422 195.1 68.1 0.26 50 1265.0 103.4 0.81 158.0 53.4 0.21 

Table 3. Results from sequential coupled process-performance simulations at the training points 

estimates. It is seen that the average errors for the test points also validate the surrogate  
models created for the optimization problem. In order to enhance the accuracy of the 
metamodels for thinning and spring back responses, the actual responses are transformed 
using a logarithmic function as presented in Table 4. 
 

Response 
RBF 

Typea 

Response 
Transformation 

c 
NRMSE 

(%) 
Average 
Error (%) 

Rupture, R G None 1.000 2.2 9.2 
Thinning, T G ln(T) 0.001 2.0 2.4 

Springback, S M ln(1x107 S) 0.500 1.8 3.5 
Max Crush Force, Pmax M None 0.500 4.5 2.0 
Mean Crush Force, Pm M None 0.100 3.7 5.6 

Mass, M G None 0.010 4.6 1.8 
aG = Gaussian, M = Multiquadric 

Table 4. Metamodel type, parameter, and approximation error for each response 
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6. Optimization results and discussion 

The surrogate-based design optimization problem in Eq. (17) is solved using the multi-
objective genetic algorithm (MOGA) toolbox in MATLAB (Fonseca and Fleming, 1993) with 
a randomly generated initial population size of 105 representing different combinations of 
design variable values within the specified bounds in Eq. (17). The subsequent generations 
are populated using the tournament selection algorithm with a crossover fraction of 80% 
using intermediate crossover function and the termination function tolerance of 1e-4. 
Stopping criterion is set at generation number 1400. The specific steps taken in the 
application of MOGA to this problem are as follows: 

1. Design variables expressed in real number are converted into bit strings. 
2. A random initial population is generated. 
3. Using a fitness function, members of the population are examined by  

 assigning a rank to each solution based on non-dominated front (Sun et al., 2010). 
 assigning a fitness value based on Pareto ranking. 
 calculating the niche count of each solution. 
 calculating the shared fitness value of each solution. 
 normalizing the fitness values by using share fitness values. 

4. Using a stochastic method to select parents for the next generation.  
5. Performing crossover and mutation operations. 
6. Establishing a new population. 
7. Evaluating the population attributes.  
8. Continuing steps 3 to 7 to evaluate all the objectives. 
9. Selecting half of the individuals that have a higher rank than the rest. 
10. Continuing the solution process until a stopping criterion is satisfied based on the 

average change in the spread of Pareto solution being less than the tolerance specified.  

The solution to the optimization problem in Eq. (17) for the Pareto optimum set 
converged after 139 GA generations and 14,701 function calls. The forty-five design points 
forming the Pareto frontier are listed in Table 5 in particular order. For ease of detection, 
the Pareto ID number and the corresponding best value for each objective are highlighted 
in the table. The results show that Pareto ID nos. 3, 4, 5, 6, 7, and 9 have the best values for 
rupture, springback, thinning, max crush force, mass, and mean crush force, respectively. 
A closer examination of the response values in Table 5 reveals that the response values at 
two or more design points may be very close to each other or nearly equal. This is because 
of the nonlinear distribution of the points on the Pareto frontier. For all the objectives, the 
preferred value is the smallest one except for the mean crush force. This is because the 
tube’s energy absorption capacity improves by increasing the mean crush force value. 
However, it is preferred to reduce the max crush force for such components. 

The range of variation over the Pareto frontier is different from one objective to another.  
Specifically, the relative variations from the best to the worst values are approximately 
757%, 20%, 1354%, 133%, -59%, and 145% for rupture, thinning, springback, max crush 
force, mean crush force, and mass, respectively. The most significant range of variation in  



 
Finite Element Analysis – Applications in Mechanical Engineering 374 

 Design Variables Responses
Pareto 

ID 
x1 

(mm) 
x2

(mm)
x3

(mm)
x4

(mm)
x5

(kN)
x6

(m/s) x7  R T S Pmax

(kN)
Pm  

(kN) 
M  

(kg) 
1 43.35 27.93 4.86 1.28 25.06 6.95 0.20 848.0 17.28 2.25 86.0 36.2 0.11 
2 48.98 30.77 6.36 1.55 22.50 6.24 0.23 624.2 17.04 2.32 112.5 46.2 0.15 
3 40.44 31.85 5.55 1.31 26.93 5.12 0.18 455.4 16.65 3.16 95.9 38.8 0.12 
4 58.36 33.16 5.35 2.09 32.40 6.85 0.23 2217.0 18.38 0.24 171.7 64.0 0.23 
5 65.41 22.66 6.28 1.28 26.72 6.08 0.22 684.0 15.93 1.52 93.7 32.3 0.13 
6 51.72 24.55 6.09 1.30 27.16 5.76 0.21 474.8 16.26 1.63 84.0 30.3 0.12 
7 54.92 22.86 5.55 1.28 25.34 6.73 0.21 594.6 16.54 1.09 85.1 29.1 0.11 
8 65.80 35.05 6.32 2.26 32.40 6.68 0.20 1543.5 18.16 1.21 195.4 71.4 0.27 
9 63.30 35.61 6.44 2.26 32.41 6.68 0.20 1533.6 18.19 1.14 193.7 71.6 0.27 
10 58.99 34.75 6.13 2.24 31.87 6.57 0.23 1924.1 18.27 0.61 186.9 69.5 0.25 
11 40.05 31.91 6.33 1.65 28.18 5.00 0.18 569.7 16.78 3.39 119.3 47.8 0.15 
12 43.97 31.87 3.88 2.25 29.99 6.46 0.27 3902.1 18.99 1.21 162.3 62.0 0.21 
13 41.42 31.79 5.98 1.85 28.20 5.22 0.19 1143.4 17.41 2.98 133.9 53.4 0.17 
14 44.79 31.86 3.74 2.13 29.97 6.42 0.27 3751.6 19.06 1.23 153.8 57.7 0.20 
15 39.44 31.91 6.46 1.35 28.18 5.00 0.18 762.9 16.08 3.49 100.3 41.5 0.12 
16 44.16 31.91 3.75 1.88 28.41 6.52 0.23 3130.2 18.91 1.88 134.9 51.3 0.18 
17 40.52 31.89 4.45 1.99 28.33 5.08 0.28 2700.7 18.75 1.57 141.0 54.5 0.18 
18 42.16 32.76 4.24 2.25 30.28 6.22 0.22 3606.3 18.83 1.76 164.0 63.7 0.21 
19 55.93 33.29 5.12 2.25 31.21 6.57 0.24 2764.3 18.55 0.44 181.7 67.0 0.24 
20 57.84 30.86 5.35 2.08 28.88 6.61 0.22 2046.6 18.21 0.51 166.7 63.6 0.22 
21 40.67 31.85 5.88 1.63 27.44 5.15 0.19 811.9 17.13 3.09 117.3 46.9 0.15 
22 41.36 31.88 6.13 1.68 28.18 5.16 0.18 724.3 17.01 3.20 121.7 48.4 0.16 
23 48.48 31.92 3.91 2.16 30.45 6.46 0.27 3685.4 19.00 1.03 160.3 58.6 0.21 
24 63.50 34.16 5.71 2.26 32.02 6.65 0.20 1983.8 18.29 0.78 192.6 70.3 0.26 
25 40.06 31.96 6.34 1.51 29.18 5.57 0.22 503.7 16.94 2.88 108.1 44.2 0.14 
26 57.74 33.56 5.22 2.17 32.15 6.61 0.23 2484.5 18.48 0.34 178.5 65.7 0.24 
27 49.24 32.26 5.00 2.25 30.16 6.60 0.26 3062.1 18.60 0.80 170.3 64.7 0.23 
28 40.60 32.47 3.78 2.19 28.72 6.34 0.26 3871.6 19.04 1.52 156.8 61.3 0.20 
29 54.19 32.99 5.00 2.12 31.53 6.66 0.25 2706.8 18.57 0.42 168.1 62.1 0.22 
30 42.42 31.88 5.24 2.02 29.14 6.09 0.19 2195.0 18.19 2.24 146.3 59.3 0.19 
31 39.63 31.85 6.15 1.81 28.19 5.01 0.18 951.1 17.18 3.27 130.6 52.5 0.17 
32 42.26 33.15 4.45 2.24 31.63 6.62 0.19 3423.0 18.75 1.93 164.0 64.4 0.21 
33 41.73 27.49 3.92 1.81 28.97 5.97 0.28 2648.1 18.71 1.45 119.0 44.8 0.16 
34 44.99 31.29 3.75 2.17 30.27 6.12 0.26 3741.3 19.03 1.33 155.9 58.2 0.21 
35 43.41 32.29 5.04 1.74 29.59 5.88 0.21 1699.2 18.02 2.18 125.7 49.7 0.17 
36 40.14 31.90 3.97 1.91 29.01 6.02 0.21 2982.7 18.75 2.33 135.1 53.6 0.17 
37 41.30 31.81 5.54 1.93 28.85 5.41 0.19 1651.7 17.82 2.65 139.1 55.7 0.18 
38 43.90 32.73 4.56 2.08 31.34 6.27 0.23 3026.6 18.65 1.47 152.4 58.8 0.20 
39 60.43 34.90 6.28 2.26 32.08 6.59 0.19 1630.5 18.13 0.95 190.4 71.3 0.26 
40 40.71 32.24 4.97 1.43 29.79 4.99 0.23 1029.4 17.67 2.55 101.7 38.7 0.13 
41 42.69 34.76 5.63 2.10 29.45 5.17 0.21 2003.1 18.10 2.15 158.7 60.3 0.21 
42 61.52 32.37 5.47 2.22 30.16 6.52 0.23 2230.0 18.30 0.53 185.4 67.8 0.25 
43 56.76 32.84 5.36 2.25 32.40 6.61 0.21 2405.2 18.37 0.49 182.7 69.0 0.24 
44 57.81 33.58 5.24 2.25 32.20 6.58 0.23 2609.8 18.50 0.41 184.9 68.0 0.25 
45 52.62 34.49 4.55 2.26 31.66 6.56 0.27 3337.9 18.85 0.69 177.9 64.2 0.24 

Table 5. Design points on the Pareto optimum frontier 



 
Concurrent Process-Product Design Optimization Using Coupled Nonlinear Finite-Element Simulations 375 

the springback reveals the high sensitivity of this response, relative to the rest, to changes in 
the design variable values. In comparison, thinning seems to be affected the least by the 
changes in design. Such information helps in identifying the critical responses for both 
process and product design considerations.  

Given the six-dimensional space of the process-product criteria space, the process and 
performance objectives are plotted separately and shown in Fig. 11. In addition, a sample 
subset of the Pareto set is selected with the individual tube geometries and crush 
deformation modes shown in Fig. 12. Among the six points shown, design points 6, 11, and 
33 are shown among the best choices to minimize the mass and maximum crush force.  

The results indicate that the Pareto set consists mostly of a tube design that is larger in total 
height than width with approximately 72% and 67% having larger thickness and longer 
corner radius than the respective average values, respectively. The general trend appears to 
be toward a tube design model with dissimilar width and height dimensions, which can be 
traced to two contributing factors: (1) while only a portion of width is work hardened, the 
entire height section undergoes plastic deformation during the forming process; and (2) the 
flanges (short tabs) in the double-hat geometry (see Fig. 9) influence how the different sides 
of the tube deform and contribute to the crush energy absorption. In most cases, it appears 
to be preferable for the holding force to be less than its average value in approximately 60% 
of the Pareto set. A nearly equal percentage prefers a lower friction coefficient while a 
slightly higher portion (roughly 67%) prefers a higher punch velocity than the respective 
average values. 

 
Figure 11. Distribution of Pareto optimal set in performance (a) and process (b) criteria subspaces 

To measure the approximation error in the optimum process and performance objective 
values, a complete verification simulation was performed on seven samples with the relative 
errors shown in Table 6. Most error values are fairly low, less than 5%, with the highest 
reaching 14.7%, which is reasonable for the types of simulation involved and the 
approximation techniques used in solving the design optimization problem.  

(a) (b)
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Figure 12. Selected design points from the Pareto set 

 

Pareto 
ID 

R 
(%) 

T 
(%) 

S 
(%) 

Pmax 
(%) 

Pm 
(%) 

M 
(%) 

4 7.8 1.6 4.7 1.1 0.4 0.4 
6 5.7 3.8 4.3 3.1 12.2 0.3 

11 12.2 1.0 6.1 2.5 14.7 0.7 
18 5.6 0.8 1.0 1.9 5.3 0.1 
23 9.1 0.7 4.3 1.1 1.0 0.1 
33 0.9 2.9 1.9 1.3 2.9 0.9 

Table 6. Relative Error in Responses at Selected Pareto Points 

7. Conclusion 

A methodology for concurrent process-product design optimization using coupled nonlinear 
finite-element (FE) simulations was presented and applied to a sheet formed component made 
of AZ31 magnesium alloy. All FE simulations were performed using the Abaqus Explicit and 
Standard solvers. Surrogate models based on radial basis functions were developed for 
process and performance response approximations to facilitate the numerical multi-objective 
design optimization process.  

The results of this investigation lead to the following conclusions: 

  Material and component geometry variations can be modeled using a sequence of 
coupled nonlinear FE simulations with careful transfer of state variables and other 
information from one simulation stage to the next. 
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 Both the manufacturing and geometric design variables can have significant influence 
on the energy absorption behavior of the formed tube considered. 

 All process responses (i.e., rupture, thinning, and springback) were greatly influenced 
by the initial blank thickness value and corner radius.  

 The results of the multi-objective optimization problem highlighted different levels of 
conflict among the process and performance objectives considered. Moreover, the 
variation of objectives over the Pareto frontier indicated differing levels of sensitivity to 
changes in the design properties with springback being the most noteworthy.  
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